File size: 8,166 Bytes
381fba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import streamlit as st
import os
import tempfile
import gc
import base64
import time
import yaml

from tqdm import tqdm
from datetime import datetime
from typing import Optional

from crawl4ai_scrapper import scrape_multiple_channels
from crewai import Agent, Crew, Process, Task, LLM
from crewai_tools import FileReadTool
from dotenv import load_dotenv

load_dotenv()

# ===========================
#   Cerebras LLM Integration
# ===========================
class CerebrasLLM(LLM):
    def __init__(self, model: str, api_key: str, base_url: str, **kwargs):
        from llama_index.llms.cerebras import Cerebras
        self.client = Cerebras(
            model=model,
            api_key=api_key,
            base_url=base_url,
            **kwargs
        )
    
    def generate(self, prompt: str, **kwargs) -> str:
        response = self.client.complete(prompt, **kwargs)
        return response.text

@st.cache_resource
def load_llm() -> CerebrasLLM:
    return CerebrasLLM(
        model="llama-3.3-70b",
        api_key=os.getenv("CEREBRAS_API_KEY"),
        base_url="https://api.cerebras.ai/v1",
        temperature=0.7,
        max_tokens=4096,
        top_p=0.95,
        timeout=30
    )

# ===========================
#   Core Application Logic
# ===========================
class YouTubeAnalyzer:
    def __init__(self):
        self.docs_tool = FileReadTool()
        self.llm = load_llm()
        
    def create_crew(self):
        with open("config.yaml", 'r') as file:
            config = yaml.safe_load(file)
        
        analysis_agent = Agent(
            role=config["agents"][0]["role"],
            goal=config["agents"][0]["goal"],
            backstory=config["agents"][0]["backstory"],
            verbose=True,
            tools=[self.docs_tool],
            llm=self.llm,
            memory=True
        )

        synthesis_agent = Agent(
            role=config["agents"][1]["role"],
            goal=config["agents"][1]["goal"],
            backstory=config["agents"][1]["backstory"],
            verbose=True,
            llm=self.llm,
            allow_delegation=False
        )

        analysis_task = Task(
            description=config["tasks"][0]["description"],
            expected_output=config["tasks"][0]["expected_output"],
            agent=analysis_agent,
            output_file="analysis_raw.md"
        )

        synthesis_task = Task(
            description=config["tasks"][1]["description"],
            expected_output=config["tasks"][1]["expected_output"],
            agent=synthesis_agent,
            context=[analysis_task],
            output_file="final_report.md"
        )

        return Crew(
            agents=[analysis_agent, synthesis_agent],
            tasks=[analysis_task, synthesis_task],
            process=Process.sequential,
            verbose=2
        )

# ===========================
#   Streamlit Interface
# ===========================
class StreamlitApp:
    def __init__(self):
        self.analyzer = YouTubeAnalyzer()
        self._init_session_state()
        
    def _init_session_state(self):
        if "response" not in st.session_state:
            st.session_state.response = None
        if "crew" not in st.session_state:
            st.session_state.crew = None
        if "youtube_channels" not in st.session_state:
            st.session_state.youtube_channels = [""]

    def _setup_sidebar(self):
        with st.sidebar:
            st.header("YouTube Analysis Configuration")
            
            # Channel Management
            for i, channel in enumerate(st.session_state.youtube_channels):
                cols = st.columns([6, 1])
                with cols[0]:
                    url = st.text_input(
                        "Channel URL", 
                        value=channel,
                        key=f"channel_{i}",
                        help="Example: https://www.youtube.com/@ChannelName"
                    )
                with cols[1]:
                    if i > 0 and st.button("❌", key=f"remove_{i}"):
                        st.session_state.youtube_channels.pop(i)
                        st.rerun()
            
            st.button("Add Channel βž•", on_click=lambda: st.session_state.youtube_channels.append(""))

            # Date Selection
            st.divider()
            st.subheader("Analysis Period")
            self.start_date = st.date_input("Start Date", key="start_date")
            self.end_date = st.date_input("End Date", key="end_date")
            
            # Analysis Control
            st.divider()
            if st.button("πŸš€ Start Analysis", type="primary"):
                self._trigger_analysis()

    def _trigger_analysis(self):
        with st.spinner('Initializing deep content analysis...'):
            try:
                valid_urls = [
                    url for url in st.session_state.youtube_channels 
                    if self._is_valid_youtube_url(url)
                ]
                
                if not valid_urls:
                    st.error("Please provide at least one valid YouTube channel URL")
                    return
                
                # Scrape and process data
                channel_data = asyncio.run(
                    scrape_multiple_channels(
                        valid_urls,
                        start_date=self.start_date.strftime("%Y-%m-%d"),
                        end_date=self.end_date.strftime("%Y-%m-%d")
                    )
                )
                
                # Save transcripts
                self._save_transcripts(channel_data)
                
                # Execute analysis
                with st.spinner('Running AI-powered analysis...'):
                    st.session_state.crew = self.analyzer.create_crew()
                    st.session_state.response = st.session_state.crew.kickoff(
                        inputs={"files": st.session_state.all_files}
                    )
                    
            except Exception as e:
                st.error(f"Analysis failed: {str(e)}")
                st.stop()

    def _save_transcripts(self, channel_data):
        st.session_state.all_files = []
        os.makedirs("transcripts", exist_ok=True)
        
        with tqdm(total=sum(len(ch) for ch in channel_data), desc="Processing Videos") as pbar:
            for channel in channel_data:
                for video in channel:
                    file_path = f"transcripts/{video['id']}.txt"
                    with open(file_path, "w") as f:
                        f.write("\n".join(
                            [f"[{seg['start']}-{seg['end']}] {seg['text']}" 
                             for seg in video['transcript']]
                        ))
                    st.session_state.all_files.append(file_path)
                    pbar.update(1)

    def _display_results(self):
        st.markdown("## Analysis Report")
        with st.expander("View Full Technical Analysis"):
            st.markdown(st.session_state.response)
            
        col1, col2 = st.columns([3, 1])
        with col1:
            st.download_button(
                label="πŸ“₯ Download Full Report",
                data=st.session_state.response,
                file_name="youtube_analysis_report.md",
                mime="text/markdown"
            )
        with col2:
            if st.button("πŸ”„ New Analysis"):
                gc.collect()
                st.session_state.response = None
                st.rerun()

    @staticmethod
    def _is_valid_youtube_url(url: str) -> bool:
        return any(pattern in url for pattern in ["youtube.com/", "youtu.be/"])

    def run(self):
        # Move st.set_page_config to the top to fix the error
        st.set_page_config(page_title="YouTube Intelligence System", layout="wide")  # First Streamlit command
        
        st.title("YouTube Content Analysis Platform")
        st.markdown("---")
        
        self._setup_sidebar()
        
        if st.session_state.response:
            self._display_results()
        else:
            st.info("Configure analysis parameters in the sidebar to begin")