File size: 8,717 Bytes
943f6f4 6745843 943f6f4 6b32578 943f6f4 6745843 943f6f4 6745843 943f6f4 6745843 943f6f4 6745843 943f6f4 ea659b4 943f6f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import streamlit as st
import os
import time
import yaml
import asyncio # Add asyncio for async handling
from tqdm import tqdm
from crawl4ai_scrapper import * # Import Crawl4AI Scraper
from dotenv import load_dotenv
load_dotenv()
from crewai import Agent, Crew, Process, Task, LLM
from crewai_tools import FileReadTool
docs_tool = FileReadTool()
# Using the Cerebras Llama 3.3 70B model
def load_llm():
# Set up the Cerebras model with the Llama 3.3 70B API
llm = LLM(model="llama3.3-70B", api_key=os.getenv("CEREBRAS_API_KEY"))
return llm
# ===========================
# Define Agents & Tasks
# ===========================
def create_agents_and_tasks():
"""Creates a Crew for analysis of the channel scraped output"""
with open("config.yaml", 'r') as file:
config = yaml.safe_load(file)
analysis_agent = Agent(
role=config["agents"][0]["role"],
goal=config["agents"][0]["goal"],
backstory=config["agents"][0]["backstory"],
verbose=True,
tools=[docs_tool],
llm=load_llm()
)
response_synthesizer_agent = Agent(
role=config["agents"][1]["role"],
goal=config["agents"][1]["goal"],
backstory=config["agents"][1]["backstory"],
verbose=True,
llm=load_llm()
)
analysis_task = Task(
description=config["tasks"][0]["description"],
expected_output=config["tasks"][0]["expected_output"],
agent=analysis_agent
)
response_task = Task(
description=config["tasks"][1]["description"],
expected_output=config["tasks"][1]["expected_output"],
agent=response_synthesizer_agent
)
crew = Crew(
agents=[analysis_agent, response_synthesizer_agent],
tasks=[analysis_task, response_task],
process=Process.sequential,
verbose=True
)
return crew
# ===========================
# Streamlit Setup
# ===========================
st.title("YouTube Trend Analysis")
if "messages" not in st.session_state:
st.session_state.messages = [] # Chat history
if "response" not in st.session_state:
st.session_state.response = None
if "crew" not in st.session_state:
st.session_state.crew = None # Store the Crew object
def reset_chat():
st.session_state.messages = []
async def start_analysis():
"""Async version of start_analysis to handle coroutines correctly"""
# Create a status container
with st.spinner('Scraping videos... This may take a moment.'):
status_container = st.empty()
status_container.info("Extracting videos from the channels...")
# Trigger Crawl4AI scraping instead of BrightData
channel_snapshot_id = await trigger_scraping_channels(st.session_state.youtube_channels, 10, st.session_state.start_date, st.session_state.end_date, "Latest", "")
status = await get_progress(channel_snapshot_id['snapshot_id'])
while status['status'] != "ready":
status_container.info(f"Current status: {status['status']}")
time.sleep(10)
status = await get_progress(channel_snapshot_id['snapshot_id'])
if status['status'] == "failed":
status_container.error(f"Scraping failed: {status}")
return
if status['status'] == "ready":
status_container.success("Scraping completed successfully!")
# Show a list of YouTube videos here in a scrollable container
channel_scrapped_output = await get_output(status['snapshot_id'], format="json")
st.markdown("## YouTube Videos Extracted")
# Create a container for the carousel
carousel_container = st.container()
# Calculate number of videos per row (adjust as needed)
videos_per_row = 3
with carousel_container:
num_videos = len(channel_scrapped_output[0])
num_rows = (num_videos + videos_per_row - 1) // videos_per_row
for row in range(num_rows):
# Create columns for each row
cols = st.columns(videos_per_row)
# Fill each column with a video
for col_idx in range(videos_per_row):
video_idx = row * videos_per_row + col_idx
# Check if we still have videos to display
if video_idx < num_videos:
with cols[col_idx]:
st.video(channel_scrapped_output[0][video_idx]['url'])
status_container.info("Processing transcripts...")
st.session_state.all_files = []
# Calculate transcripts
for i in tqdm(range(len(channel_scrapped_output[0]))):
# Save transcript to file
youtube_video_id = channel_scrapped_output[0][i]['shortcode']
file = "transcripts/" + youtube_video_id + ".txt"
st.session_state.all_files.append(file)
with open(file, "w") as f:
for j in range(len(channel_scrapped_output[0][i]['formatted_transcript'])):
text = channel_scrapped_output[0][i]['formatted_transcript'][j]['text']
start_time = channel_scrapped_output[0][i]['formatted_transcript'][j]['start_time']
end_time = channel_scrapped_output[0][i]['formatted_transcript'][j]['end_time']
f.write(f"({start_time:.2f}-{end_time:.2f}): {text}\n")
f.close()
st.session_state.channel_scrapped_output = channel_scrapped_output
status_container.success("Scraping complete! We shall now analyze the videos and report trends...")
else:
status_container.error(f"Scraping failed with status: {status}")
if status['status'] == "ready":
status_container = st.empty()
with st.spinner('The agent is analyzing the videos... This may take a moment.'):
# create crew
st.session_state.crew = create_agents_and_tasks()
st.session_state.response = st.session_state.crew.kickoff(inputs={"file_paths": ", ".join(st.session_state.all_files)})
# ===========================
# Sidebar
# ===========================
with st.sidebar:
st.header("YouTube Channels")
if "youtube_channels" not in st.session_state:
st.session_state.youtube_channels = [""] # Start with one empty field
# Function to add new channel field
def add_channel_field():
st.session_state.youtube_channels.append("")
# Create input fields for each channel
for i, channel in enumerate(st.session_state.youtube_channels):
col1, col2 = st.columns([6, 1])
with col1:
st.session_state.youtube_channels[i] = st.text_input(
"Channel URL",
value=channel,
key=f"channel_{i}",
label_visibility="collapsed"
)
with col2:
if i > 0:
if st.button("β", key=f"remove_{i}"):
st.session_state.youtube_channels.pop(i)
st.rerun()
st.button("Add Channel β", on_click=add_channel_field)
st.divider()
st.subheader("Date Range")
col1, col2 = st.columns(2)
with col1:
start_date = st.date_input("Start Date")
st.session_state.start_date = start_date
st.session_state.start_date = start_date.strftime("%Y-%m-%d")
with col2:
end_date = st.date_input("End Date")
st.session_state.end_date = end_date
st.session_state.end_date = end_date.strftime("%Y-%m-%d")
st.divider()
st.button("Start Analysis π", on_click=lambda: asyncio.run(start_analysis())) # Here we use asyncio.run()
# ===========================
# Main Chat Interface
# ===========================
if st.session_state.response:
with st.spinner('Generating content... This may take a moment.'):
try:
result = st.session_state.response
st.markdown("### Generated Analysis")
st.markdown(result)
# Add download button
st.download_button(
label="Download Content",
data=result.raw,
file_name=f"youtube_trend_analysis.md",
mime="text/markdown"
)
except Exception as e:
st.error(f"An error occurred: {str(e)}")
# Footer
st.markdown("---")
st.markdown("Built with CrewAI, Crawl4AI and Streamlit")
|