muhammadsalmanalfaridzi's picture
Update app.py
a1d4dd3 verified
raw
history blame
4.54 kB
import os
import gradio as gr
from argparse import ArgumentParser
from groq import Groq
import base64
import io
# Initialize Groq client
API_KEY = os.environ['GROQ_API_KEY']
client = Groq(api_key=API_KEY)
REVISION = 'v1.0.4'
def _get_args():
parser = ArgumentParser()
parser.add_argument("--revision", type=str, default=REVISION)
parser.add_argument("--share", action="store_true", default=False, help="Create a publicly shareable link for the interface.")
return parser.parse_args()
def process_image(image):
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
return buffered.getvalue()
def translate_audio(audio_file):
with open(audio_file, "rb") as file:
translation = client.audio.translations.create(
file=(audio_file, file.read()),
model="whisper-large-v3",
response_format="json",
temperature=0.0
)
return translation.text
def transcribe_audio(audio_file):
with open(audio_file, "rb") as file:
transcription = client.audio.transcriptions.create(
file=(audio_file, file.read()),
model="whisper-large-v3",
response_format="json",
temperature=0.0
)
return transcription.text
def predict(chat_history, query, image, audio, translate):
final_query = query.strip()
if audio:
audio_file_path = audio
if translate:
translation_text = translate_audio(audio_file_path)
final_query = translation_text.strip()
chat_history.append({'role': 'assistant', 'content': translation_text})
else:
transcribed_text = transcribe_audio(audio_file_path)
final_query = f"{final_query} {transcribed_text}".strip()
image_data = process_image(image) if image else None
messages = create_messages(final_query, image_data)
if not messages:
error_message = "No valid input provided. Please enter a query or upload an image/audio."
chat_history.append({'role': 'assistant', 'content': error_message})
return chat_history
try:
completion = client.chat.completions.create(
model="llama-3.2-90b-vision-preview",
messages=messages,
temperature=1,
max_tokens=1500,
top_p=1,
stream=False,
)
response_text = completion.choices[0].message.content.strip()
chat_history.append({'role': 'user', 'content': final_query})
chat_history.append({'role': 'assistant', 'content': response_text})
except Exception as e:
response_text = f"Error: {str(e)}"
chat_history.append({'role': 'user', 'content': final_query})
chat_history.append({'role': 'assistant', 'content': response_text})
return chat_history
def create_messages(query, image_data):
messages = []
if query:
messages.append({'role': 'user', 'content': query})
if image_data:
image_base64 = f"data:image/jpeg;base64,{base64.b64encode(image_data).decode()}"
messages.append({
'role': 'user',
'content': [
{"type": "text", "text": "Please analyze this image."},
{"type": "image_url", "image_url": {"url": image_base64}}
]
})
return messages
def clear_history():
return []
def main():
args = _get_args()
with gr.Blocks(css="#chatbox {height: 400px; background-color: #f9f9f9; padding: 20px; border-radius: 10px; }") as demo:
gr.Markdown("<h1 style='text-align: center; color: #4a4a4a;'>Llama-3.2-90b-vision-preview</h1>")
chatbox = gr.Chatbot(type='messages', elem_id="chatbox")
query = gr.Textbox(label="Type your query here...", placeholder="Enter your question or command...", lines=2)
image_input = gr.Image(type="pil", label="Upload Image")
audio_input = gr.Audio(type="filepath", label="Upload Audio")
translate_checkbox = gr.Checkbox(label="Translate Audio to English Text")
with gr.Row():
submit_btn = gr.Button("Submit", variant="primary", elem_id="submit-btn")
clear_btn = gr.Button("Clear History", variant="secondary", elem_id="clear-btn")
submit_btn.click(predict, inputs=[chatbox, query, image_input, audio_input, translate_checkbox], outputs=chatbox)
clear_btn.click(clear_history, outputs=chatbox)
demo.launch(share=args.share)
if __name__ == '__main__':
main()