File size: 10,769 Bytes
f6f175d 6103a1b f6f175d 16ead0e f6f175d 0e1d1ec f6f175d 6103a1b f6f175d 0e1d1ec f6f175d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import cv2
import numpy as np
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from dds_cloudapi_sdk import TextPrompt
import subprocess
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle . cans . mixed box" # Customize sesuai produk kompetitor : food . drink
# Inisialisasi Model
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)
# ========== Fungsi Deteksi Kombinasi ==========
def detect_combined(image):
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_path = temp_file.name
try:
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
# Hitung per class Nestlé
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
total_nestle = sum(nestle_class_count.values())
# ========== [2] DINO-X: Deteksi Kompetitor ==========
image_url = dinox_client.upload_file(temp_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.4,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Filter & Hitung Kompetitor
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
class_name = obj.category.strip().lower() # Normalisasi nama kelas
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
total_competitor = sum(competitor_class_count.values())
# ========== [3] Format Output ==========
result_text = "Product Nestle\n\n"
for class_name, count in nestle_class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
#result_text += "Competitor Products\n\n"
if competitor_class_count:
result_text += f"Total Unclassified Products: {total_competitor}\n" # Hanya total, tidak per kelas
else:
result_text += "No Unclassified Products detected\n"
# ========== [4] Visualisasi ==========
img = cv2.imread(temp_path)
# Nestlé (Hijau)
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
# Kompetitor (Merah) dengan nama 'unclassified'
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
# Define a list of target classes to rename
unclassified_classes = ["beverage", "cans", "bottle", "mixed box"]
# Normalize the class name to be case-insensitive and check if it's in the unclassified list
display_name = "unclassified" if any(class_name in comp['class'].lower() for class_name in unclassified_classes) else comp['class']
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)
output_path = "/tmp/combined_output.jpg"
cv2.imwrite(output_path, img)
return output_path, result_text
except Exception as e:
return temp_path, f"Error: {str(e)}"
finally:
os.remove(temp_path)
def is_overlap(box1, boxes2, threshold=0.3):
# Fungsi untuk deteksi overlap bounding box
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
# Hitung area overlap
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Fungsi untuk Deteksi Video ==========
def convert_video_to_mp4(input_path, output_path):
try:
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
return output_path
except subprocess.CalledProcessError as e:
return None, f"Error converting video: {e}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
previous_detections = {} # For storing previous frame's object detections
try:
# Convert video to MP4 if necessary
if not video_path.endswith(".mp4"):
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
if not video_path:
return None, f"Video conversion error: {err}"
# Read video and process frames
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter for output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Save frame temporarily for predictions
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# Process predictions for the current frame
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
# Track current frame detections
current_detections = {}
for prediction in predictions['predictions']:
class_name = prediction['class']
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
# Generate a unique ID for each detection based on the bounding box
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
# Track each detected object individually
if object_id not in current_detections:
current_detections[object_id] = class_name
# Draw bounding box for detected objects
cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# Update counts for objects
object_counts = {}
for detection_id in current_detections.keys():
class_name = current_detections[detection_id]
object_counts[class_name] = object_counts.get(class_name, 0) + 1
# Generate display text for counts
count_text = ""
total_product_count = 0
for class_name, count in object_counts.items():
count_text += f"{class_name}: {count}\n"
total_product_count += count
count_text += f"\nTotal Product: {total_product_count}"
# Overlay the counts text onto the frame
y_offset = 20
for line in count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30 # Move down for next line
# Write processed frame to output video
output_video.write(frame)
frame_count += 1
# Update previous_detections for the next frame
previous_detections = current_detections
video.release()
output_video.release()
return temp_output_path
except Exception as e:
return None, f"An error occurred: {e}"
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()
|