muhammadsalmanalfaridzi's picture
Update app.py
e49837a verified
raw
history blame
4.26 kB
import gradio as gr
from dotenv import load_dotenv
from roboflow import Roboflow
import tempfile
import os
import requests
import numpy as np # Import numpy to handle image slices
from sahi.predict import get_sliced_prediction # SAHI slicing inference
import supervision as sv # For annotating images with results
# Muat variabel lingkungan dari file .env
load_dotenv()
api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# Inisialisasi Roboflow menggunakan data yang diambil dari secrets
rf = Roboflow(api_key=api_key)
project = rf.workspace(workspace).project(project_name)
model = project.version(model_version).model
# Fungsi untuk menangani input dan output gambar
def detect_objects(image):
# Simpan gambar yang diupload sebagai file sementara
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
try:
# Perform sliced inference with SAHI using InferenceSlicer
def callback(image_slice: np.ndarray) -> sv.Detections:
results = model.infer(image_slice)[0] # Perform inference on each slice
return sv.Detections.from_inference(results)
# Configure the SAHI Slicer with specific slice dimensions and overlap
slicer = sv.InferenceSlicer(
callback=callback,
slice_wh=(320, 320), # Adjust slice dimensions as needed
overlap_wh=(64, 64), # Adjust overlap in pixels (DO NOT use overlap_ratio_wh here)
overlap_filter=sv.OverlapFilter.NON_MAX_SUPPRESSION, # Filter overlapping detections
iou_threshold=0.5, # Intersection over Union threshold for NMS
)
# Run slicing-based inference
detections = slicer(image)
# Annotate the results on the image
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()
annotated_image = box_annotator.annotate(
scene=image.copy(), detections=detections)
annotated_image = label_annotator.annotate(
scene=annotated_image, detections=detections)
# Save the annotated image
output_image_path = "/tmp/prediction_visual.png"
annotated_image.save(output_image_path)
# Count the number of detected objects per class
class_count = {}
total_count = 0
for prediction in detections:
class_name = prediction.class_id # or prediction.class_name if available
class_count[class_name] = class_count.get(class_name, 0) + 1
total_count += 1 # Increment the total object count
# Create a result text with object counts
result_text = "Detected Objects:\n\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal objects detected: {total_count}"
except requests.exceptions.HTTPError as http_err:
# Handle HTTP errors
result_text = f"HTTP error occurred: {http_err}"
output_image_path = temp_file_path # Return the original image in case of error
except Exception as err:
# Handle other errors
result_text = f"An error occurred: {err}"
output_image_path = temp_file_path # Return the original image in case of error
# Clean up temporary files
os.remove(temp_file_path)
return output_image_path, result_text
# Create the Gradio interface
with gr.Blocks() as iface:
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detected Objects")
with gr.Column():
output_text = gr.Textbox(label="Object Count")
# Button to trigger object detection
detect_button = gr.Button("Detect Objects")
# Link the button to the detect_objects function
detect_button.click(
fn=detect_objects,
inputs=input_image,
outputs=[output_image, output_text]
)
# Launch the interface
iface.launch()