|
import gradio as gr |
|
import tempfile |
|
import os |
|
import cv2 |
|
from sahi import AutoDetectionModel |
|
from sahi.predict import get_sliced_prediction |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
model_path = "best.pt" |
|
confidence_threshold = 0.6 |
|
sahi_device = 'cuda' |
|
|
|
|
|
sahi_model = AutoDetectionModel.from_pretrained( |
|
model_type="yolov11", |
|
model_path=model_path, |
|
confidence_threshold=confidence_threshold, |
|
device=sahi_device |
|
) |
|
|
|
|
|
def detect_objects(image): |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: |
|
image.save(temp_file, format="JPEG") |
|
temp_file_path = temp_file.name |
|
|
|
try: |
|
|
|
results = get_sliced_prediction( |
|
image=image, |
|
detection_model=sahi_model, |
|
slice_height=512, |
|
slice_width=512, |
|
overlap_height_ratio=0.2, |
|
overlap_width_ratio=0.2 |
|
) |
|
|
|
|
|
class_count = {} |
|
total_count = 0 |
|
|
|
|
|
output_image = np.array(image) |
|
|
|
for prediction in results.object_prediction_list: |
|
bbox = prediction.bbox |
|
class_name = prediction.category.name |
|
confidence = prediction.score.value |
|
|
|
|
|
if confidence >= confidence_threshold: |
|
|
|
cv2.rectangle(output_image, |
|
(int(bbox.minx), int(bbox.miny)), |
|
(int(bbox.maxx), int(bbox.maxy)), |
|
(0, 255, 0), 2) |
|
|
|
|
|
cv2.putText(output_image, |
|
f"{class_name} {confidence:.2f}", |
|
(int(bbox.minx), int(bbox.miny) - 10), |
|
cv2.FONT_HERSHEY_SIMPLEX, 0.9, |
|
(0, 255, 0), 2) |
|
|
|
|
|
class_count[class_name] = class_count.get(class_name, 0) + 1 |
|
total_count += 1 |
|
|
|
|
|
result_text = "Detected Objects:\n\n" |
|
for class_name, count in class_count.items(): |
|
result_text += f"{class_name}: {count}\n" |
|
result_text += f"\nTotal Objects: {total_count}" |
|
|
|
|
|
output_image_pil = Image.fromarray(output_image) |
|
output_image_path = "/tmp/prediction.jpg" |
|
output_image_pil.save(output_image_path) |
|
|
|
except Exception as err: |
|
|
|
result_text = f"An error occurred: {err}" |
|
output_image_path = temp_file_path |
|
|
|
|
|
os.remove(temp_file_path) |
|
|
|
return output_image_path, result_text |
|
|
|
|
|
with gr.Blocks() as iface: |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Input Image") |
|
with gr.Column(): |
|
output_image = gr.Image(label="Detect Object") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Counting Object") |
|
|
|
|
|
detect_button = gr.Button("Detect") |
|
|
|
|
|
detect_button.click( |
|
fn=detect_objects, |
|
inputs=input_image, |
|
outputs=[output_image, output_text] |
|
) |
|
|
|
|
|
iface.launch() |
|
|