Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import cv2
|
|
8 |
import numpy as np
|
9 |
import subprocess
|
10 |
|
11 |
-
# ========== Konfigurasi ==========
|
12 |
load_dotenv()
|
13 |
|
14 |
# Roboflow Config
|
@@ -17,95 +17,205 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
COUNTGD_PROMPT = ["beverage", "bottle", "cans", "mixed box"] # Sesuaikan prompt
|
24 |
|
25 |
-
# Inisialisasi Model
|
26 |
rf = Roboflow(api_key=rf_api_key)
|
27 |
project = rf.workspace(workspace).project(project_name)
|
28 |
yolo_model = project.version(model_version).model
|
29 |
|
30 |
-
# ========== Fungsi Deteksi Kombinasi ==========
|
31 |
def detect_combined(image):
|
32 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
33 |
image.save(temp_file, format="JPEG")
|
34 |
temp_path = temp_file.name
|
35 |
|
36 |
try:
|
37 |
-
# ========== [1] YOLO: Deteksi Produk Nestlé ==========
|
38 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
39 |
-
|
|
|
40 |
nestle_class_count = {}
|
41 |
nestle_boxes = []
|
42 |
for pred in yolo_pred['predictions']:
|
43 |
class_name = pred['class']
|
44 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
45 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
46 |
-
|
47 |
total_nestle = sum(nestle_class_count.values())
|
48 |
-
|
49 |
-
# ========== [2]
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
competitor_class_count = {}
|
58 |
competitor_boxes = []
|
59 |
-
for obj in countgd_pred.get("
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
"class"
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
68 |
total_competitor = sum(competitor_class_count.values())
|
69 |
-
|
70 |
-
# ========== [3] Format Output ==========
|
71 |
-
result_text = "Product
|
72 |
for class_name, count in nestle_class_count.items():
|
73 |
result_text += f"{class_name}: {count}\n"
|
74 |
-
result_text += f"\nTotal Products
|
75 |
-
|
76 |
if competitor_class_count:
|
77 |
result_text += f"Total Unclassified Products: {total_competitor}\n"
|
78 |
else:
|
79 |
result_text += "No Unclassified Products detected\n"
|
80 |
-
|
81 |
-
# ========== [4] Visualisasi ==========
|
82 |
img = cv2.imread(temp_path)
|
83 |
-
|
84 |
-
# Nestlé (Hijau)
|
85 |
for pred in yolo_pred['predictions']:
|
86 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
87 |
-
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
88 |
-
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
|
89 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0
|
90 |
-
|
91 |
-
#
|
92 |
for comp in competitor_boxes:
|
93 |
x1, y1, x2, y2 = comp['box']
|
|
|
|
|
94 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
95 |
-
cv2.putText(img, f"{
|
96 |
-
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0
|
97 |
-
|
98 |
output_path = "/tmp/combined_output.jpg"
|
99 |
cv2.imwrite(output_path, img)
|
100 |
|
101 |
return output_path, result_text
|
102 |
-
|
103 |
except Exception as e:
|
104 |
return temp_path, f"Error: {str(e)}"
|
105 |
finally:
|
106 |
os.remove(temp_path)
|
107 |
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
110 |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
111 |
|
@@ -117,4 +227,10 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", ne
|
|
117 |
output_text = gr.Textbox(label="Counting Object")
|
118 |
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
iface.launch()
|
|
|
8 |
import numpy as np
|
9 |
import subprocess
|
10 |
|
11 |
+
# ========== Konfigurasi ==========
|
12 |
load_dotenv()
|
13 |
|
14 |
# Roboflow Config
|
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
+
# CountGD Config
|
21 |
+
# Prompt yang digunakan untuk mendeteksi objek kompetitor
|
22 |
+
COUNTGD_PROMPT = "beverage . bottle . cans . mixed box"
|
|
|
23 |
|
24 |
+
# Inisialisasi Model YOLO dari Roboflow
|
25 |
rf = Roboflow(api_key=rf_api_key)
|
26 |
project = rf.workspace(workspace).project(project_name)
|
27 |
yolo_model = project.version(model_version).model
|
28 |
|
29 |
+
# ========== Fungsi Deteksi Kombinasi ==========
|
30 |
def detect_combined(image):
|
31 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
32 |
image.save(temp_file, format="JPEG")
|
33 |
temp_path = temp_file.name
|
34 |
|
35 |
try:
|
36 |
+
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
|
37 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
38 |
+
|
39 |
+
# Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
|
40 |
nestle_class_count = {}
|
41 |
nestle_boxes = []
|
42 |
for pred in yolo_pred['predictions']:
|
43 |
class_name = pred['class']
|
44 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
45 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
46 |
+
|
47 |
total_nestle = sum(nestle_class_count.values())
|
48 |
+
|
49 |
+
# ========== [2] COUNTGD: Deteksi Kompetitor ==========
|
50 |
+
# Mengirimkan request ke endpoint CountGD sesuai dokumentasi:
|
51 |
+
# https://va.landing.ai/demo/api/Countgd%20Counting
|
52 |
+
countgd_url = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
53 |
+
with open(temp_path, "rb") as image_file:
|
54 |
+
files = {"image": image_file}
|
55 |
+
data = {
|
56 |
+
"prompts": [COUNTGD_PROMPT],
|
57 |
+
"model": "countgd"
|
58 |
+
}
|
59 |
+
response = requests.post(countgd_url, files=files, data=data)
|
60 |
+
# Asumsikan respons JSON mengandung key "predictions" dengan daftar objek
|
61 |
+
countgd_pred = response.json()
|
62 |
+
|
63 |
competitor_class_count = {}
|
64 |
competitor_boxes = []
|
65 |
+
for obj in countgd_pred.get("predictions", []):
|
66 |
+
countgd_box = obj["bbox"] # Format: [x1, y1, x2, y2]
|
67 |
+
# Filter objek yang sudah terdeteksi oleh YOLO (menghindari duplikasi deteksi)
|
68 |
+
if not is_overlap(countgd_box, nestle_boxes):
|
69 |
+
class_name = obj["class"].strip().lower()
|
70 |
+
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
|
71 |
+
competitor_boxes.append({
|
72 |
+
"class": class_name,
|
73 |
+
"box": countgd_box,
|
74 |
+
"confidence": obj["score"]
|
75 |
+
})
|
76 |
+
|
77 |
total_competitor = sum(competitor_class_count.values())
|
78 |
+
|
79 |
+
# ========== [3] Format Output ==========
|
80 |
+
result_text = "Product Nestle\n\n"
|
81 |
for class_name, count in nestle_class_count.items():
|
82 |
result_text += f"{class_name}: {count}\n"
|
83 |
+
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
|
84 |
+
|
85 |
if competitor_class_count:
|
86 |
result_text += f"Total Unclassified Products: {total_competitor}\n"
|
87 |
else:
|
88 |
result_text += "No Unclassified Products detected\n"
|
89 |
+
|
90 |
+
# ========== [4] Visualisasi ==========
|
91 |
img = cv2.imread(temp_path)
|
92 |
+
|
93 |
+
# Tandai deteksi produk Nestlé (Hijau)
|
94 |
for pred in yolo_pred['predictions']:
|
95 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
96 |
+
cv2.rectangle(img, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
|
97 |
+
cv2.putText(img, pred['class'], (int(x - w/2), int(y - h/2 - 10)),
|
98 |
+
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 0), 3)
|
99 |
+
|
100 |
+
# Tandai deteksi kompetitor (Merah), dengan pengecekan untuk merubah nama kelas menjadi 'unclassified'
|
101 |
for comp in competitor_boxes:
|
102 |
x1, y1, x2, y2 = comp['box']
|
103 |
+
unclassified_classes = ["beverage", "cans", "bottle", "mixed box"]
|
104 |
+
display_name = "unclassified" if any(c in comp['class'].lower() for c in unclassified_classes) else comp['class']
|
105 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
106 |
+
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
|
107 |
+
(int(x1), int(y1 - 10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 3)
|
108 |
+
|
109 |
output_path = "/tmp/combined_output.jpg"
|
110 |
cv2.imwrite(output_path, img)
|
111 |
|
112 |
return output_path, result_text
|
113 |
+
|
114 |
except Exception as e:
|
115 |
return temp_path, f"Error: {str(e)}"
|
116 |
finally:
|
117 |
os.remove(temp_path)
|
118 |
|
119 |
+
def is_overlap(box1, boxes2, threshold=0.3):
|
120 |
+
# Fungsi untuk mendeteksi overlap antara bounding box
|
121 |
+
x1_min, y1_min, x1_max, y1_max = box1
|
122 |
+
for b2 in boxes2:
|
123 |
+
x2, y2, w2, h2 = b2
|
124 |
+
x2_min = x2 - w2/2
|
125 |
+
x2_max = x2 + w2/2
|
126 |
+
y2_min = y2 - h2/2
|
127 |
+
y2_max = y2 + h2/2
|
128 |
+
|
129 |
+
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
130 |
+
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
131 |
+
if (dx >= 0) and (dy >= 0):
|
132 |
+
area_overlap = dx * dy
|
133 |
+
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
|
134 |
+
if area_overlap / area_box1 > threshold:
|
135 |
+
return True
|
136 |
+
return False
|
137 |
+
|
138 |
+
# ========== Fungsi Deteksi Video (tetap menggunakan YOLO) ==========
|
139 |
+
def convert_video_to_mp4(input_path, output_path):
|
140 |
+
try:
|
141 |
+
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
|
142 |
+
return output_path
|
143 |
+
except subprocess.CalledProcessError as e:
|
144 |
+
return None, f"Error converting video: {e}"
|
145 |
+
|
146 |
+
def detect_objects_in_video(video_path):
|
147 |
+
temp_output_path = "/tmp/output_video.mp4"
|
148 |
+
temp_frames_dir = tempfile.mkdtemp()
|
149 |
+
frame_count = 0
|
150 |
+
previous_detections = {}
|
151 |
+
|
152 |
+
try:
|
153 |
+
if not video_path.endswith(".mp4"):
|
154 |
+
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
|
155 |
+
if not video_path:
|
156 |
+
return None, f"Video conversion error: {err}"
|
157 |
+
|
158 |
+
video = cv2.VideoCapture(video_path)
|
159 |
+
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
160 |
+
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
161 |
+
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
162 |
+
frame_size = (frame_width, frame_height)
|
163 |
+
|
164 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
165 |
+
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
|
166 |
+
|
167 |
+
while True:
|
168 |
+
ret, frame = video.read()
|
169 |
+
if not ret:
|
170 |
+
break
|
171 |
+
|
172 |
+
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
173 |
+
cv2.imwrite(frame_path, frame)
|
174 |
+
|
175 |
+
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
176 |
+
|
177 |
+
current_detections = {}
|
178 |
+
for prediction in predictions['predictions']:
|
179 |
+
class_name = prediction['class']
|
180 |
+
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
181 |
+
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
|
182 |
+
if object_id not in current_detections:
|
183 |
+
current_detections[object_id] = class_name
|
184 |
+
|
185 |
+
cv2.rectangle(frame, (int(x - w/2), int(y - h/2)), (int(x + w/2), int(y + h/2)), (0, 255, 0), 2)
|
186 |
+
cv2.putText(frame, class_name, (int(x - w/2), int(y - h/2 - 10)),
|
187 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
188 |
+
|
189 |
+
object_counts = {}
|
190 |
+
for detection_id in current_detections.keys():
|
191 |
+
class_name = current_detections[detection_id]
|
192 |
+
object_counts[class_name] = object_counts.get(class_name, 0) + 1
|
193 |
+
|
194 |
+
count_text = ""
|
195 |
+
total_product_count = 0
|
196 |
+
for class_name, count in object_counts.items():
|
197 |
+
count_text += f"{class_name}: {count}\n"
|
198 |
+
total_product_count += count
|
199 |
+
count_text += f"\nTotal Product: {total_product_count}"
|
200 |
+
|
201 |
+
y_offset = 20
|
202 |
+
for line in count_text.split("\n"):
|
203 |
+
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
204 |
+
y_offset += 30
|
205 |
+
|
206 |
+
output_video.write(frame)
|
207 |
+
frame_count += 1
|
208 |
+
previous_detections = current_detections
|
209 |
+
|
210 |
+
video.release()
|
211 |
+
output_video.release()
|
212 |
+
|
213 |
+
return temp_output_path
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
return None, f"An error occurred: {e}"
|
217 |
+
|
218 |
+
# ========== Gradio Interface ==========
|
219 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
220 |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
221 |
|
|
|
227 |
output_text = gr.Textbox(label="Counting Object")
|
228 |
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
229 |
|
230 |
+
with gr.Column():
|
231 |
+
input_video = gr.Video(label="Input Video")
|
232 |
+
detect_video_button = gr.Button("Detect Video")
|
233 |
+
output_video = gr.Video(label="Output Video")
|
234 |
+
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
|
235 |
+
|
236 |
iface.launch()
|