muhammadsalmanalfaridzi commited on
Commit
680db36
·
verified ·
1 Parent(s): 76977ef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +282 -0
app.py ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from dotenv import load_dotenv
3
+ from roboflow import Roboflow
4
+ import tempfile
5
+ import os
6
+ import requests
7
+ import cv2
8
+ import numpy as np
9
+ import subprocess
10
+
11
+ # ========== Konfigurasi ==========
12
+ load_dotenv()
13
+
14
+ # Roboflow Config
15
+ rf_api_key = os.getenv("ROBOFLOW_API_KEY")
16
+ workspace = os.getenv("ROBOFLOW_WORKSPACE")
17
+ project_name = os.getenv("ROBOFLOW_PROJECT")
18
+ model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
+
20
+ # OWLv2 Config
21
+ OWLV2_API_KEY = os.getenv("COUNTGD_API_KEY")
22
+ OWLV2_PROMPTS = ["bottle", "tetra pak","cans", "carton drink"]
23
+
24
+ # Inisialisasi Model YOLO
25
+ rf = Roboflow(api_key=rf_api_key)
26
+ project = rf.workspace(workspace).project(project_name)
27
+ yolo_model = project.version(model_version).model
28
+
29
+ # ========== Fungsi Deteksi Kombinasi ==========
30
+ from PIL import Image
31
+
32
+ # Fungsi untuk deteksi dengan resize
33
+ from PIL import Image
34
+
35
+ # Fungsi untuk deteksi dengan resize
36
+ def detect_combined(image):
37
+ # Simpan gambar input ke file sementara
38
+ with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
39
+ image.save(temp_file, format="JPEG")
40
+ temp_path = temp_file.name
41
+
42
+ try:
43
+ # Simpan dimensi asli untuk scaling
44
+ original_width, original_height = image.size
45
+
46
+ # Resize gambar input menjadi 640x640
47
+ img = Image.open(temp_path)
48
+ img = img.resize((640, 640), Image.Resampling.LANCZOS) # Ganti ANTIALIAS dengan LANCZOS
49
+ img.save(temp_path, format="JPEG")
50
+
51
+ # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
52
+ yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
53
+
54
+ # Hitung per class Nestlé dan simpan bounding box (format: (x_center, y_center, width, height))
55
+ nestle_class_count = {}
56
+ nestle_boxes = []
57
+ for pred in yolo_pred['predictions']:
58
+ class_name = pred['class']
59
+ nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
60
+ nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
61
+
62
+ total_nestle = sum(nestle_class_count.values())
63
+
64
+ # ========== [2] OWLv2: Deteksi Kompetitor ==========
65
+ headers = {
66
+ "Authorization": "Basic " + OWLV2_API_KEY,
67
+ }
68
+ data = {
69
+ "prompts": OWLV2_PROMPTS,
70
+ "model": "owlv2",
71
+ "confidence": 0.25
72
+ }
73
+ with open(temp_path, "rb") as f:
74
+ files = {"image": f}
75
+ response = requests.post("https://api.landing.ai/v1/tools/text-to-object-detection", files=files, data=data, headers=headers)
76
+ result = response.json()
77
+ owlv2_objects = result['data'][0] if 'data' in result else []
78
+
79
+ competitor_class_count = {}
80
+ competitor_boxes = []
81
+ for obj in owlv2_objects:
82
+ if 'bounding_box' in obj:
83
+ bbox = obj['bounding_box'] # Format: [x1, y1, x2, y2]
84
+ if not is_overlap(bbox, nestle_boxes):
85
+ class_name = obj.get('label', 'unknown').strip().lower()
86
+ competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
87
+ competitor_boxes.append({
88
+ "class": class_name,
89
+ "box": bbox,
90
+ "confidence": obj.get("score", 0)
91
+ })
92
+
93
+ total_competitor = sum(competitor_class_count.values())
94
+
95
+ # ========== [3] Format Output ==========
96
+ result_text = "Product Nestle\n\n"
97
+ for class_name, count in nestle_class_count.items():
98
+ result_text += f"{class_name}: {count}\n"
99
+ result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
100
+ if competitor_class_count:
101
+ result_text += f"Total Unclassified Products: {total_competitor}\n"
102
+ else:
103
+ result_text += "No Unclassified Products detected\n"
104
+
105
+ # ========== [4] Visualisasi ==========
106
+ img = cv2.imread(temp_path)
107
+
108
+ # Gambar bounding box untuk produk Nestlé (Hijau)
109
+ for pred in yolo_pred['predictions']:
110
+ x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
111
+ x1 = int(x - w/2)
112
+ y1 = int(y - h/2)
113
+ x2 = int(x + w/2)
114
+ y2 = int(y + h/2)
115
+
116
+ # Scale bounding box to original size
117
+ scale_x = original_width / 640
118
+ scale_y = original_height / 640
119
+ x1_original = int(x1 * scale_x)
120
+ y1_original = int(y1 * scale_y)
121
+ x2_original = int(x2 * scale_x)
122
+ y2_original = int(y2 * scale_y)
123
+
124
+ cv2.rectangle(img, (x1_original, y1_original), (x2_original, y2_original), (0, 255, 0), 2)
125
+ cv2.putText(img, pred['class'], (x1_original, y1_original - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
126
+
127
+ # Gambar bounding box untuk kompetitor (Merah)
128
+ for comp in competitor_boxes:
129
+ x1, y1, x2, y2 = comp['box']
130
+ # Scale bounding box to original size
131
+ x1_original = int(x1 * scale_x)
132
+ y1_original = int(y1 * scale_y)
133
+ x2_original = int(x2 * scale_x)
134
+ y2_original = int(y2 * scale_y)
135
+
136
+ cv2.rectangle(img, (x1_original, y1_original), (x2_original, y2_original), (0, 0, 255), 2)
137
+ cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}", (x1_original, y1_original - 10),
138
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
139
+
140
+ output_path = "/tmp/combined_output.jpg"
141
+ cv2.imwrite(output_path, img)
142
+
143
+ return output_path, result_text
144
+
145
+ except Exception as e:
146
+ return temp_path, f"Error: {str(e)}"
147
+ finally:
148
+ os.remove(temp_path)
149
+
150
+ def is_overlap(box1, boxes2, threshold=0.3):
151
+ """
152
+ Fungsi untuk mendeteksi overlap bounding box.
153
+ Parameter:
154
+ - box1: Bounding box pertama dengan format (x1, y1, x2, y2)
155
+ - boxes2: List bounding box lainnya dengan format (x_center, y_center, width, height)
156
+ """
157
+ x1_min, y1_min, x1_max, y1_max = box1
158
+ for b2 in boxes2:
159
+ x2, y2, w2, h2 = b2
160
+ x2_min = x2 - w2/2
161
+ x2_max = x2 + w2/2
162
+ y2_min = y2 - h2/2
163
+ y2_max = y2 + h2/2
164
+
165
+ dx = min(x1_max, x2_max) - max(x1_min, x2_min)
166
+ dy = min(y1_max, y2_max) - max(y1_min, y2_min)
167
+ if (dx >= 0) and (dy >= 0):
168
+ area_overlap = dx * dy
169
+ area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
170
+ if area_overlap / area_box1 > threshold:
171
+ return True
172
+ return False
173
+
174
+ # ========== Fungsi untuk Deteksi Video ==========
175
+ def convert_video_to_mp4(input_path, output_path):
176
+ try:
177
+ subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
178
+ return output_path
179
+ except subprocess.CalledProcessError as e:
180
+ return None, f"Error converting video: {e}"
181
+
182
+ def detect_objects_in_video(video_path):
183
+ temp_output_path = "/tmp/output_video.mp4"
184
+ temp_frames_dir = tempfile.mkdtemp()
185
+ all_class_count = {} # Untuk menyimpan total hitungan objek dari semua frame
186
+ nestle_total = 0
187
+ frame_count = 0
188
+
189
+ try:
190
+ # Convert video ke MP4 jika perlu
191
+ if not video_path.endswith(".mp4"):
192
+ video_path, err = convert_video_to_mp4(video_path, temp_output_path)
193
+ if not video_path:
194
+ return None, f"Video conversion error: {err}"
195
+
196
+ # Membaca dan memproses frame video
197
+ video = cv2.VideoCapture(video_path)
198
+ frame_rate = int(video.get(cv2.CAP_PROP_FPS))
199
+ frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
200
+ frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
201
+ frame_size = (frame_width, frame_height)
202
+
203
+ # VideoWriter untuk output video
204
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
205
+ output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
206
+
207
+ while True:
208
+ ret, frame = video.read()
209
+ if not ret:
210
+ break
211
+
212
+ # Simpan frame untuk prediksi
213
+ frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
214
+ cv2.imwrite(frame_path, frame)
215
+
216
+ # Proses prediksi untuk frame
217
+ predictions = yolo_model.predict(frame_path, confidence=60, overlap=80).json()
218
+
219
+ # Update hitungan objek untuk frame ini
220
+ frame_class_count = {}
221
+ for prediction in predictions['predictions']:
222
+ class_name = prediction['class']
223
+ frame_class_count[class_name] = frame_class_count.get(class_name, 0) + 1
224
+ cv2.rectangle(frame, (int(prediction['x'] - prediction['width']/2),
225
+ int(prediction['y'] - prediction['height']/2)),
226
+ (int(prediction['x'] + prediction['width']/2),
227
+ int(prediction['y'] + prediction['height']/2)),
228
+ (0, 255, 0), 2)
229
+ cv2.putText(frame, class_name, (int(prediction['x'] - prediction['width']/2),
230
+ int(prediction['y'] - prediction['height']/2 - 10)),
231
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
232
+
233
+ # Update hitungan kumulatif
234
+ for class_name, count in frame_class_count.items():
235
+ all_class_count[class_name] = all_class_count.get(class_name, 0) + count
236
+
237
+ nestle_total = sum(all_class_count.values())
238
+
239
+ # Overlay teks hitungan pada frame
240
+ count_text = "Cumulative Object Counts\n"
241
+ for class_name, count in all_class_count.items():
242
+ count_text += f"{class_name}: {count}\n"
243
+ count_text += f"\nTotal Product Nestlé: {nestle_total}"
244
+
245
+ y_offset = 20
246
+ for line in count_text.split("\n"):
247
+ cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
248
+ y_offset += 30
249
+
250
+ output_video.write(frame)
251
+ frame_count += 1
252
+
253
+ video.release()
254
+ output_video.release()
255
+
256
+ return temp_output_path
257
+
258
+ except Exception as e:
259
+ return None, f"An error occurred: {e}"
260
+
261
+ # ========== Gradio Interface ==========
262
+ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
263
+ gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
264
+ with gr.Row():
265
+ with gr.Column():
266
+ input_image = gr.Image(type="pil", label="Input Image")
267
+ with gr.Column():
268
+ output_image = gr.Image(label="Detect Object")
269
+ with gr.Column():
270
+ output_text = gr.Textbox(label="Counting Object")
271
+
272
+ # Tombol untuk memproses input
273
+ detect_button = gr.Button("Detect")
274
+
275
+ # Hubungkan tombol dengan fungsi deteksi
276
+ detect_button.click(
277
+ fn=detect_combined,
278
+ inputs=input_image,
279
+ outputs=[output_image, output_text]
280
+ )
281
+
282
+ iface.launch()