Update app.py
Browse files
app.py
CHANGED
@@ -17,205 +17,123 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
-
# CountGD Config
|
21 |
-
# Set your CountGD API key in your .env file (e.g., COUNTGD_API_KEY=YourEncodedAPIKey)
|
22 |
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
|
23 |
|
24 |
-
# Inisialisasi YOLO Model
|
25 |
rf = Roboflow(api_key=rf_api_key)
|
26 |
project = rf.workspace(workspace).project(project_name)
|
27 |
yolo_model = project.version(model_version).model
|
28 |
|
29 |
-
# ==========
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
# Calculate overlap area
|
45 |
-
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
46 |
-
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
47 |
-
if dx > 0 and dy > 0:
|
48 |
-
area_overlap = dx * dy
|
49 |
-
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
|
50 |
-
if area_box1 > 0 and (area_overlap / area_box1) > threshold:
|
51 |
-
return True
|
52 |
-
return False
|
53 |
-
|
54 |
-
# ========== Combined Object Detection Function ==========
|
55 |
def detect_combined(image):
|
56 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
57 |
image.save(temp_file, format="JPEG")
|
58 |
temp_path = temp_file.name
|
59 |
-
|
60 |
try:
|
61 |
-
#
|
62 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
63 |
nestle_class_count = {}
|
64 |
-
nestle_boxes = [] #
|
65 |
for pred in yolo_pred['predictions']:
|
66 |
class_name = pred['class']
|
67 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
68 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
|
|
69 |
total_nestle = sum(nestle_class_count.values())
|
70 |
-
|
71 |
-
#
|
72 |
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
73 |
-
files = {"image": open(temp_path, "rb")}
|
74 |
-
data = {"prompts": ["mixed box"], "model": "countgd"}
|
75 |
-
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
|
76 |
-
response = requests.post(url, files=files, data=data, headers=headers)
|
77 |
-
result = response.json()
|
78 |
-
|
79 |
competitor_class_count = {}
|
80 |
-
competitor_boxes = []
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
competitor_boxes.append(countgd_box)
|
|
|
92 |
total_competitor = sum(competitor_class_count.values())
|
93 |
-
|
94 |
-
#
|
95 |
result_text = "Product Nestlé\n\n"
|
96 |
for class_name, count in nestle_class_count.items():
|
97 |
result_text += f"{class_name}: {count}\n"
|
98 |
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
|
|
|
99 |
if total_competitor:
|
100 |
-
result_text += f"
|
101 |
else:
|
102 |
result_text += "No Unclassified Products detected\n"
|
103 |
-
|
104 |
-
#
|
105 |
img = cv2.imread(temp_path)
|
106 |
-
# Draw YOLO boxes in green
|
107 |
for pred in yolo_pred['predictions']:
|
108 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
109 |
pt1 = (int(x - w/2), int(y - h/2))
|
110 |
pt2 = (int(x + w/2), int(y + h/2))
|
111 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
112 |
-
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
|
113 |
-
|
114 |
-
# Draw CountGD boxes in red
|
115 |
for box in competitor_boxes:
|
116 |
x1, y1, x2, y2 = box
|
117 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
118 |
-
cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
|
119 |
-
|
120 |
-
|
121 |
output_path = "/tmp/combined_output.jpg"
|
122 |
cv2.imwrite(output_path, img)
|
123 |
return output_path, result_text
|
124 |
-
|
125 |
except Exception as e:
|
126 |
return temp_path, f"Error: {str(e)}"
|
127 |
-
|
128 |
finally:
|
129 |
if os.path.exists(temp_path):
|
130 |
os.remove(temp_path)
|
131 |
|
132 |
-
# ========== Video Detection Functions ==========
|
133 |
-
def convert_video_to_mp4(input_path, output_path):
|
134 |
-
try:
|
135 |
-
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
|
136 |
-
return output_path
|
137 |
-
except subprocess.CalledProcessError as e:
|
138 |
-
return None, f"Error converting video: {e}"
|
139 |
-
|
140 |
-
def detect_objects_in_video(video_path):
|
141 |
-
temp_output_path = "/tmp/output_video.mp4"
|
142 |
-
temp_frames_dir = tempfile.mkdtemp()
|
143 |
-
frame_count = 0
|
144 |
-
previous_detections = {} # For storing previous frame's detections
|
145 |
-
|
146 |
-
try:
|
147 |
-
# Convert video to MP4 if necessary
|
148 |
-
if not video_path.endswith(".mp4"):
|
149 |
-
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
|
150 |
-
if not video_path:
|
151 |
-
return None, f"Video conversion error: {err}"
|
152 |
-
|
153 |
-
# Open video for processing
|
154 |
-
video = cv2.VideoCapture(video_path)
|
155 |
-
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
156 |
-
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
157 |
-
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
158 |
-
frame_size = (frame_width, frame_height)
|
159 |
-
|
160 |
-
# Setup VideoWriter for output
|
161 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
162 |
-
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
|
163 |
-
|
164 |
-
while True:
|
165 |
-
ret, frame = video.read()
|
166 |
-
if not ret:
|
167 |
-
break
|
168 |
-
|
169 |
-
# Save frame for YOLO detection
|
170 |
-
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
171 |
-
cv2.imwrite(frame_path, frame)
|
172 |
-
|
173 |
-
# YOLO detection on the frame
|
174 |
-
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
175 |
-
|
176 |
-
# Draw YOLO detections on the frame
|
177 |
-
current_detections = {}
|
178 |
-
for prediction in predictions['predictions']:
|
179 |
-
class_name = prediction['class']
|
180 |
-
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
181 |
-
object_id = f"{class_name}_{x}_{y}_{w}_{h}"
|
182 |
-
if object_id not in current_detections:
|
183 |
-
current_detections[object_id] = class_name
|
184 |
-
pt1 = (int(x - w/2), int(y - h/2))
|
185 |
-
pt2 = (int(x + w/2), int(y + h/2))
|
186 |
-
cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
|
187 |
-
cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
|
188 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
189 |
-
|
190 |
-
# Count objects and overlay text
|
191 |
-
object_counts = {}
|
192 |
-
for detection_id in current_detections:
|
193 |
-
cls = current_detections[detection_id]
|
194 |
-
object_counts[cls] = object_counts.get(cls, 0) + 1
|
195 |
-
|
196 |
-
count_text = ""
|
197 |
-
total_product_count = 0
|
198 |
-
for cls, count in object_counts.items():
|
199 |
-
count_text += f"{cls}: {count}\n"
|
200 |
-
total_product_count += count
|
201 |
-
count_text += f"\nTotal Product: {total_product_count}"
|
202 |
-
y_offset = 20
|
203 |
-
for line in count_text.split("\n"):
|
204 |
-
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
|
205 |
-
y_offset += 30
|
206 |
-
|
207 |
-
output_video.write(frame)
|
208 |
-
frame_count += 1
|
209 |
-
previous_detections = current_detections
|
210 |
-
|
211 |
-
video.release()
|
212 |
-
output_video.release()
|
213 |
-
|
214 |
-
return temp_output_path
|
215 |
-
|
216 |
-
except Exception as e:
|
217 |
-
return None, f"An error occurred: {e}"
|
218 |
-
|
219 |
# ========== Gradio Interface ==========
|
220 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
221 |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
@@ -227,10 +145,5 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", ne
|
|
227 |
output_image = gr.Image(label="Detect Object")
|
228 |
output_text = gr.Textbox(label="Counting Object")
|
229 |
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
230 |
-
with gr.Column():
|
231 |
-
input_video = gr.Video(label="Input Video")
|
232 |
-
detect_video_button = gr.Button("Detect Video")
|
233 |
-
output_video = gr.Video(label="Output Video")
|
234 |
-
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
|
235 |
|
236 |
iface.launch()
|
|
|
17 |
project_name = os.getenv("ROBOFLOW_PROJECT")
|
18 |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
19 |
|
20 |
+
# CountGD Config
|
|
|
21 |
COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
|
22 |
|
23 |
+
# Inisialisasi YOLO Model dari Roboflow
|
24 |
rf = Roboflow(api_key=rf_api_key)
|
25 |
project = rf.workspace(workspace).project(project_name)
|
26 |
yolo_model = project.version(model_version).model
|
27 |
|
28 |
+
# ========== Fungsi untuk Menghitung IoU ==========
|
29 |
+
def iou(boxA, boxB):
|
30 |
+
xA = max(boxA[0], boxB[0])
|
31 |
+
yA = max(boxA[1], boxB[1])
|
32 |
+
xB = min(boxA[2], boxB[2])
|
33 |
+
yB = min(boxA[3], boxB[3])
|
34 |
+
|
35 |
+
interArea = max(0, xB - xA) * max(0, yB - yA)
|
36 |
+
boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
|
37 |
+
boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
|
38 |
+
|
39 |
+
return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
|
40 |
+
|
41 |
+
# ========== Fungsi Deteksi Kombinasi ==========
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def detect_combined(image):
|
43 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
44 |
image.save(temp_file, format="JPEG")
|
45 |
temp_path = temp_file.name
|
46 |
+
|
47 |
try:
|
48 |
+
# YOLO Detection (Produk Nestlé)
|
49 |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
50 |
nestle_class_count = {}
|
51 |
+
nestle_boxes = [] # (x_center, y_center, width, height)
|
52 |
for pred in yolo_pred['predictions']:
|
53 |
class_name = pred['class']
|
54 |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
55 |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
56 |
+
|
57 |
total_nestle = sum(nestle_class_count.values())
|
58 |
+
|
59 |
+
# CountGD Detection (Produk Kompetitor)
|
60 |
url = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
competitor_class_count = {}
|
62 |
+
competitor_boxes = []
|
63 |
+
COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
|
64 |
+
headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
|
65 |
+
|
66 |
+
for prompt in COUNTGD_PROMPTS:
|
67 |
+
with open(temp_path, "rb") as f:
|
68 |
+
files = {"image": f}
|
69 |
+
data = {"prompts": [prompt], "model": "countgd"}
|
70 |
+
response = requests.post(url, files=files, data=data, headers=headers)
|
71 |
+
result = response.json()
|
72 |
+
|
73 |
+
if 'data' in result and result['data']:
|
74 |
+
detections = result['data'][0]
|
75 |
+
detections_sorted = sorted(detections, key=lambda obj: obj.get('confidence', 0), reverse=True)
|
76 |
+
|
77 |
+
for obj in detections_sorted:
|
78 |
+
if 'bounding_box' in obj:
|
79 |
+
x1, y1, x2, y2 = obj['bounding_box']
|
80 |
+
countgd_box = (x1, y1, x2, y2)
|
81 |
+
|
82 |
+
# Hapus duplikasi dengan deteksi YOLO
|
83 |
+
if any(iou(countgd_box, yolo_box) > 0.3 for yolo_box in nestle_boxes):
|
84 |
+
continue
|
85 |
+
|
86 |
+
# Hapus duplikasi antar deteksi CountGD
|
87 |
+
if any(iou(countgd_box, existing_box) > 0.3 for existing_box in competitor_boxes):
|
88 |
+
continue
|
89 |
+
|
90 |
+
label = obj.get('label', prompt)
|
91 |
+
|
92 |
+
# Hapus "mixed box" jika ada "cans" atau "bottle" yang lebih spesifik
|
93 |
+
if label == "mixed box" and ("cans" in competitor_class_count or "bottle" in competitor_class_count):
|
94 |
+
continue
|
95 |
+
|
96 |
+
competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
|
97 |
competitor_boxes.append(countgd_box)
|
98 |
+
|
99 |
total_competitor = sum(competitor_class_count.values())
|
100 |
+
|
101 |
+
# Format Output Text
|
102 |
result_text = "Product Nestlé\n\n"
|
103 |
for class_name, count in nestle_class_count.items():
|
104 |
result_text += f"{class_name}: {count}\n"
|
105 |
result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
|
106 |
+
|
107 |
if total_competitor:
|
108 |
+
result_text += f"\nTotal Unclassified Products: {total_competitor}\n"
|
109 |
else:
|
110 |
result_text += "No Unclassified Products detected\n"
|
111 |
+
|
112 |
+
# Visualisasi Bounding Box
|
113 |
img = cv2.imread(temp_path)
|
|
|
114 |
for pred in yolo_pred['predictions']:
|
115 |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
116 |
pt1 = (int(x - w/2), int(y - h/2))
|
117 |
pt2 = (int(x + w/2), int(y + h/2))
|
118 |
cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
|
119 |
+
cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
|
120 |
+
|
|
|
121 |
for box in competitor_boxes:
|
122 |
x1, y1, x2, y2 = box
|
123 |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
124 |
+
cv2.putText(img, "unclassified", (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
|
125 |
+
|
|
|
126 |
output_path = "/tmp/combined_output.jpg"
|
127 |
cv2.imwrite(output_path, img)
|
128 |
return output_path, result_text
|
129 |
+
|
130 |
except Exception as e:
|
131 |
return temp_path, f"Error: {str(e)}"
|
132 |
+
|
133 |
finally:
|
134 |
if os.path.exists(temp_path):
|
135 |
os.remove(temp_path)
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
# ========== Gradio Interface ==========
|
138 |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
139 |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
|
|
145 |
output_image = gr.Image(label="Detect Object")
|
146 |
output_text = gr.Textbox(label="Counting Object")
|
147 |
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
iface.launch()
|