muhammadsalmanalfaridzi commited on
Commit
6f2c705
·
verified ·
1 Parent(s): 4380403

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -157
app.py CHANGED
@@ -17,205 +17,123 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
17
  project_name = os.getenv("ROBOFLOW_PROJECT")
18
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
 
20
- # CountGD Config (Replace DINO-X)
21
- # Set your CountGD API key in your .env file (e.g., COUNTGD_API_KEY=YourEncodedAPIKey)
22
  COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
23
 
24
- # Inisialisasi YOLO Model from Roboflow
25
  rf = Roboflow(api_key=rf_api_key)
26
  project = rf.workspace(workspace).project(project_name)
27
  yolo_model = project.version(model_version).model
28
 
29
- # ========== Function to Check Overlap ==========
30
- def is_overlap(box1, boxes2, threshold=0.3):
31
- """
32
- Checks if box1 (format: (x_min, y_min, x_max, y_max)) overlaps with any boxes in boxes2.
33
- boxes2 is a list of YOLO bounding boxes in the format (x_center, y_center, width, height).
34
- Returns True if the overlap ratio of box1 is greater than the threshold.
35
- """
36
- x1_min, y1_min, x1_max, y1_max = box1
37
- for b2 in boxes2:
38
- x_center, y_center, w2, h2 = b2
39
- x2_min = x_center - w2 / 2
40
- x2_max = x_center + w2 / 2
41
- y2_min = y_center - h2 / 2
42
- y2_max = y_center + h2 / 2
43
-
44
- # Calculate overlap area
45
- dx = min(x1_max, x2_max) - max(x1_min, x2_min)
46
- dy = min(y1_max, y2_max) - max(y1_min, y2_min)
47
- if dx > 0 and dy > 0:
48
- area_overlap = dx * dy
49
- area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
50
- if area_box1 > 0 and (area_overlap / area_box1) > threshold:
51
- return True
52
- return False
53
-
54
- # ========== Combined Object Detection Function ==========
55
  def detect_combined(image):
56
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
57
  image.save(temp_file, format="JPEG")
58
  temp_path = temp_file.name
59
-
60
  try:
61
- # ===== YOLO Detection (Nestlé products) =====
62
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
63
  nestle_class_count = {}
64
- nestle_boxes = [] # List to hold YOLO bounding boxes (format: x_center, y_center, width, height)
65
  for pred in yolo_pred['predictions']:
66
  class_name = pred['class']
67
  nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
68
  nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
 
69
  total_nestle = sum(nestle_class_count.values())
70
-
71
- # ===== CountGD Detection (Competitor products) =====
72
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
73
- files = {"image": open(temp_path, "rb")}
74
- data = {"prompts": ["mixed box"], "model": "countgd"}
75
- headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
76
- response = requests.post(url, files=files, data=data, headers=headers)
77
- result = response.json()
78
-
79
  competitor_class_count = {}
80
- competitor_boxes = [] # List to hold CountGD bounding boxes (format: x_min, y_min, x_max, y_max)
81
- if 'data' in result:
82
- for obj in result['data'][0]:
83
- if 'bounding_box' in obj:
84
- # CountGD returns bounding_box as [x_min, y_min, x_max, y_max]
85
- x1, y1, x2, y2 = obj['bounding_box']
86
- countgd_box = (x1, y1, x2, y2)
87
- # Only add CountGD detection if it does NOT significantly overlap with any YOLO detection
88
- if not is_overlap(countgd_box, nestle_boxes, threshold=0.3):
89
- class_name = "unclassified" # Generic label for competitor objects
90
- competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
  competitor_boxes.append(countgd_box)
 
92
  total_competitor = sum(competitor_class_count.values())
93
-
94
- # ===== Format Output Text =====
95
  result_text = "Product Nestlé\n\n"
96
  for class_name, count in nestle_class_count.items():
97
  result_text += f"{class_name}: {count}\n"
98
  result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
 
99
  if total_competitor:
100
- result_text += f"Total Unclassified Products: {total_competitor}\n"
101
  else:
102
  result_text += "No Unclassified Products detected\n"
103
-
104
- # ===== Visualization =====
105
  img = cv2.imread(temp_path)
106
- # Draw YOLO boxes in green
107
  for pred in yolo_pred['predictions']:
108
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
109
  pt1 = (int(x - w/2), int(y - h/2))
110
  pt2 = (int(x + w/2), int(y + h/2))
111
  cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
112
- cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
113
- cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
114
- # Draw CountGD boxes in red
115
  for box in competitor_boxes:
116
  x1, y1, x2, y2 = box
117
  cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
118
- cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
119
- cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
120
-
121
  output_path = "/tmp/combined_output.jpg"
122
  cv2.imwrite(output_path, img)
123
  return output_path, result_text
124
-
125
  except Exception as e:
126
  return temp_path, f"Error: {str(e)}"
127
-
128
  finally:
129
  if os.path.exists(temp_path):
130
  os.remove(temp_path)
131
 
132
- # ========== Video Detection Functions ==========
133
- def convert_video_to_mp4(input_path, output_path):
134
- try:
135
- subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
136
- return output_path
137
- except subprocess.CalledProcessError as e:
138
- return None, f"Error converting video: {e}"
139
-
140
- def detect_objects_in_video(video_path):
141
- temp_output_path = "/tmp/output_video.mp4"
142
- temp_frames_dir = tempfile.mkdtemp()
143
- frame_count = 0
144
- previous_detections = {} # For storing previous frame's detections
145
-
146
- try:
147
- # Convert video to MP4 if necessary
148
- if not video_path.endswith(".mp4"):
149
- video_path, err = convert_video_to_mp4(video_path, temp_output_path)
150
- if not video_path:
151
- return None, f"Video conversion error: {err}"
152
-
153
- # Open video for processing
154
- video = cv2.VideoCapture(video_path)
155
- frame_rate = int(video.get(cv2.CAP_PROP_FPS))
156
- frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
157
- frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
158
- frame_size = (frame_width, frame_height)
159
-
160
- # Setup VideoWriter for output
161
- fourcc = cv2.VideoWriter_fourcc(*'mp4v')
162
- output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
163
-
164
- while True:
165
- ret, frame = video.read()
166
- if not ret:
167
- break
168
-
169
- # Save frame for YOLO detection
170
- frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
171
- cv2.imwrite(frame_path, frame)
172
-
173
- # YOLO detection on the frame
174
- predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
175
-
176
- # Draw YOLO detections on the frame
177
- current_detections = {}
178
- for prediction in predictions['predictions']:
179
- class_name = prediction['class']
180
- x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
181
- object_id = f"{class_name}_{x}_{y}_{w}_{h}"
182
- if object_id not in current_detections:
183
- current_detections[object_id] = class_name
184
- pt1 = (int(x - w/2), int(y - h/2))
185
- pt2 = (int(x + w/2), int(y + h/2))
186
- cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
187
- cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
188
- cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
189
-
190
- # Count objects and overlay text
191
- object_counts = {}
192
- for detection_id in current_detections:
193
- cls = current_detections[detection_id]
194
- object_counts[cls] = object_counts.get(cls, 0) + 1
195
-
196
- count_text = ""
197
- total_product_count = 0
198
- for cls, count in object_counts.items():
199
- count_text += f"{cls}: {count}\n"
200
- total_product_count += count
201
- count_text += f"\nTotal Product: {total_product_count}"
202
- y_offset = 20
203
- for line in count_text.split("\n"):
204
- cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
205
- y_offset += 30
206
-
207
- output_video.write(frame)
208
- frame_count += 1
209
- previous_detections = current_detections
210
-
211
- video.release()
212
- output_video.release()
213
-
214
- return temp_output_path
215
-
216
- except Exception as e:
217
- return None, f"An error occurred: {e}"
218
-
219
  # ========== Gradio Interface ==========
220
  with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
221
  gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
@@ -227,10 +145,5 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", ne
227
  output_image = gr.Image(label="Detect Object")
228
  output_text = gr.Textbox(label="Counting Object")
229
  detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
230
- with gr.Column():
231
- input_video = gr.Video(label="Input Video")
232
- detect_video_button = gr.Button("Detect Video")
233
- output_video = gr.Video(label="Output Video")
234
- detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
235
 
236
  iface.launch()
 
17
  project_name = os.getenv("ROBOFLOW_PROJECT")
18
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
 
20
+ # CountGD Config
 
21
  COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
22
 
23
+ # Inisialisasi YOLO Model dari Roboflow
24
  rf = Roboflow(api_key=rf_api_key)
25
  project = rf.workspace(workspace).project(project_name)
26
  yolo_model = project.version(model_version).model
27
 
28
+ # ========== Fungsi untuk Menghitung IoU ==========
29
+ def iou(boxA, boxB):
30
+ xA = max(boxA[0], boxB[0])
31
+ yA = max(boxA[1], boxB[1])
32
+ xB = min(boxA[2], boxB[2])
33
+ yB = min(boxA[3], boxB[3])
34
+
35
+ interArea = max(0, xB - xA) * max(0, yB - yA)
36
+ boxAArea = (boxA[2] - boxA[0]) * (boxA[3] - boxA[1])
37
+ boxBArea = (boxB[2] - boxB[0]) * (boxB[3] - boxB[1])
38
+
39
+ return interArea / float(boxAArea + boxBArea - interArea) if (boxAArea + boxBArea - interArea) > 0 else 0
40
+
41
+ # ========== Fungsi Deteksi Kombinasi ==========
 
 
 
 
 
 
 
 
 
 
 
 
42
  def detect_combined(image):
43
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
44
  image.save(temp_file, format="JPEG")
45
  temp_path = temp_file.name
46
+
47
  try:
48
+ # YOLO Detection (Produk Nestlé)
49
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
50
  nestle_class_count = {}
51
+ nestle_boxes = [] # (x_center, y_center, width, height)
52
  for pred in yolo_pred['predictions']:
53
  class_name = pred['class']
54
  nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
55
  nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
56
+
57
  total_nestle = sum(nestle_class_count.values())
58
+
59
+ # CountGD Detection (Produk Kompetitor)
60
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
 
 
 
 
 
 
61
  competitor_class_count = {}
62
+ competitor_boxes = []
63
+ COUNTGD_PROMPTS = ["cans", "bottle", "mixed box"]
64
+ headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
65
+
66
+ for prompt in COUNTGD_PROMPTS:
67
+ with open(temp_path, "rb") as f:
68
+ files = {"image": f}
69
+ data = {"prompts": [prompt], "model": "countgd"}
70
+ response = requests.post(url, files=files, data=data, headers=headers)
71
+ result = response.json()
72
+
73
+ if 'data' in result and result['data']:
74
+ detections = result['data'][0]
75
+ detections_sorted = sorted(detections, key=lambda obj: obj.get('confidence', 0), reverse=True)
76
+
77
+ for obj in detections_sorted:
78
+ if 'bounding_box' in obj:
79
+ x1, y1, x2, y2 = obj['bounding_box']
80
+ countgd_box = (x1, y1, x2, y2)
81
+
82
+ # Hapus duplikasi dengan deteksi YOLO
83
+ if any(iou(countgd_box, yolo_box) > 0.3 for yolo_box in nestle_boxes):
84
+ continue
85
+
86
+ # Hapus duplikasi antar deteksi CountGD
87
+ if any(iou(countgd_box, existing_box) > 0.3 for existing_box in competitor_boxes):
88
+ continue
89
+
90
+ label = obj.get('label', prompt)
91
+
92
+ # Hapus "mixed box" jika ada "cans" atau "bottle" yang lebih spesifik
93
+ if label == "mixed box" and ("cans" in competitor_class_count or "bottle" in competitor_class_count):
94
+ continue
95
+
96
+ competitor_class_count[label] = competitor_class_count.get(label, 0) + 1
97
  competitor_boxes.append(countgd_box)
98
+
99
  total_competitor = sum(competitor_class_count.values())
100
+
101
+ # Format Output Text
102
  result_text = "Product Nestlé\n\n"
103
  for class_name, count in nestle_class_count.items():
104
  result_text += f"{class_name}: {count}\n"
105
  result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
106
+
107
  if total_competitor:
108
+ result_text += f"\nTotal Unclassified Products: {total_competitor}\n"
109
  else:
110
  result_text += "No Unclassified Products detected\n"
111
+
112
+ # Visualisasi Bounding Box
113
  img = cv2.imread(temp_path)
 
114
  for pred in yolo_pred['predictions']:
115
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
116
  pt1 = (int(x - w/2), int(y - h/2))
117
  pt2 = (int(x + w/2), int(y + h/2))
118
  cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
119
+ cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
120
+
 
121
  for box in competitor_boxes:
122
  x1, y1, x2, y2 = box
123
  cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
124
+ cv2.putText(img, "unclassified", (int(x1), int(y1)-10), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
125
+
 
126
  output_path = "/tmp/combined_output.jpg"
127
  cv2.imwrite(output_path, img)
128
  return output_path, result_text
129
+
130
  except Exception as e:
131
  return temp_path, f"Error: {str(e)}"
132
+
133
  finally:
134
  if os.path.exists(temp_path):
135
  os.remove(temp_path)
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
  # ========== Gradio Interface ==========
138
  with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
139
  gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
 
145
  output_image = gr.Image(label="Detect Object")
146
  output_text = gr.Textbox(label="Counting Object")
147
  detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
 
 
 
 
 
148
 
149
  iface.launch()