Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
-
from dotenv import load_dotenv
|
3 |
from roboflow import Roboflow
|
4 |
import tempfile
|
5 |
import os
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
project_name = os.getenv("ROBOFLOW_PROJECT")
|
12 |
-
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
13 |
-
|
14 |
-
# Inisialisasi Roboflow menggunakan data yang diambil dari secrets
|
15 |
-
rf = Roboflow(api_key=api_key)
|
16 |
-
project = rf.workspace(workspace).project(project_name)
|
17 |
-
model = project.version(model_version).model
|
18 |
|
19 |
# Fungsi untuk menangani input dan output gambar
|
20 |
def detect_objects(image):
|
21 |
-
#
|
22 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
23 |
image.save(temp_file, format="JPEG")
|
24 |
temp_file_path = temp_file.name
|
@@ -28,24 +20,22 @@ def detect_objects(image):
|
|
28 |
|
29 |
# Menghitung jumlah objek per kelas
|
30 |
class_count = {}
|
31 |
-
total_count = 0
|
32 |
-
|
33 |
for prediction in predictions['predictions']:
|
34 |
class_name = prediction['class']
|
35 |
if class_name in class_count:
|
36 |
class_count[class_name] += 1
|
37 |
else:
|
38 |
class_count[class_name] = 1
|
39 |
-
total_count += 1
|
40 |
|
41 |
# Menyusun output berupa string hasil perhitungan
|
42 |
result_text = "Product Nestle\n\n"
|
43 |
-
|
44 |
for class_name, count in class_count.items():
|
45 |
-
result_text += f"{class_name}: {count} \n"
|
46 |
-
|
47 |
result_text += f"\nTotal Product Nestle: {total_count}"
|
48 |
-
|
49 |
# Menyimpan gambar dengan prediksi
|
50 |
output_image = model.predict(temp_file_path, confidence=60, overlap=80).save("/tmp/prediction.jpg")
|
51 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
from roboflow import Roboflow
|
3 |
import tempfile
|
4 |
import os
|
5 |
|
6 |
+
# Inisialisasi Roboflow
|
7 |
+
rf = Roboflow(api_key="Otg64Ra6wNOgDyjuhMYU")
|
8 |
+
project = rf.workspace("alat-pelindung-diri").project("nescafe-4base")
|
9 |
+
model = project.version(46).model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Fungsi untuk menangani input dan output gambar
|
12 |
def detect_objects(image):
|
13 |
+
# Menyimpan gambar yang diupload sebagai file sementara
|
14 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
15 |
image.save(temp_file, format="JPEG")
|
16 |
temp_file_path = temp_file.name
|
|
|
20 |
|
21 |
# Menghitung jumlah objek per kelas
|
22 |
class_count = {}
|
23 |
+
total_count = 0
|
|
|
24 |
for prediction in predictions['predictions']:
|
25 |
class_name = prediction['class']
|
26 |
if class_name in class_count:
|
27 |
class_count[class_name] += 1
|
28 |
else:
|
29 |
class_count[class_name] = 1
|
30 |
+
total_count += 1
|
31 |
|
32 |
# Menyusun output berupa string hasil perhitungan
|
33 |
result_text = "Product Nestle\n\n"
|
|
|
34 |
for class_name, count in class_count.items():
|
35 |
+
result_text += f"{class_name}: {count} objek\n"
|
36 |
+
|
37 |
result_text += f"\nTotal Product Nestle: {total_count}"
|
38 |
+
|
39 |
# Menyimpan gambar dengan prediksi
|
40 |
output_image = model.predict(temp_file_path, confidence=60, overlap=80).save("/tmp/prediction.jpg")
|
41 |
|