muhammadsalmanalfaridzi commited on
Commit
b60852c
·
verified ·
1 Parent(s): 7397c8b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -83
app.py CHANGED
@@ -6,13 +6,9 @@ import os
6
  import requests
7
  import cv2
8
  import numpy as np
9
- from dds_cloudapi_sdk import Config, Client
10
- from dds_cloudapi_sdk.tasks.dinox import DinoxTask
11
- from dds_cloudapi_sdk.tasks.types import DetectionTarget
12
- from dds_cloudapi_sdk import TextPrompt
13
  import subprocess
14
 
15
- # ========== Konfigurasi ==========
16
  load_dotenv()
17
 
18
  # Roboflow Config
@@ -21,71 +17,106 @@ workspace = os.getenv("ROBOFLOW_WORKSPACE")
21
  project_name = os.getenv("ROBOFLOW_PROJECT")
22
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
23
 
24
- # DINO-X Config
25
- DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
26
- DINOX_PROMPT = "beverage . bottle . cans . mixed box" # Customize sesuai produk kompetitor : food . drink
27
 
28
- # Inisialisasi Model
29
  rf = Roboflow(api_key=rf_api_key)
30
  project = rf.workspace(workspace).project(project_name)
31
  yolo_model = project.version(model_version).model
32
 
33
- dinox_config = Config(DINOX_API_KEY)
34
- dinox_client = Client(dinox_config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- # ========== Fungsi Deteksi Kombinasi ==========
37
  def detect_combined(image):
38
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
39
  image.save(temp_file, format="JPEG")
40
  temp_path = temp_file.name
41
 
42
  try:
43
- # YOLO Detection (Nestlé products)
44
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
45
  nestle_class_count = {}
46
- nestle_boxes = []
47
  for pred in yolo_pred['predictions']:
48
  class_name = pred['class']
49
  nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
50
  nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
51
  total_nestle = sum(nestle_class_count.values())
52
 
53
- # CountGD Detection (Competitor products)
54
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
55
  files = {"image": open(temp_path, "rb")}
56
  data = {"prompts": ["mixed box"], "model": "countgd"}
57
- headers = {"Authorization": "Basic YOUR_API_KEY"} # Replace with actual API key
58
  response = requests.post(url, files=files, data=data, headers=headers)
59
  result = response.json()
60
 
61
  competitor_class_count = {}
62
- competitor_boxes = []
63
  if 'data' in result:
64
  for obj in result['data'][0]:
65
  if 'bounding_box' in obj:
66
- x, y, x2, y2 = obj['bounding_box']
67
- class_name = "unclassified" # CountGD does not classify, so use generic label
68
- competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
69
- competitor_boxes.append((x, y, x2, y2))
 
 
 
 
70
  total_competitor = sum(competitor_class_count.values())
71
 
72
- # Format Output
73
  result_text = "Product Nestlé\n\n"
74
  for class_name, count in nestle_class_count.items():
75
  result_text += f"{class_name}: {count}\n"
76
  result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
77
- result_text += f"Total Unclassified Products: {total_competitor}\n" if total_competitor else "No Unclassified Products detected\n"
 
 
 
78
 
79
- # Visualization
80
  img = cv2.imread(temp_path)
 
81
  for pred in yolo_pred['predictions']:
82
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
83
- cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
84
- cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
85
-
86
- for x1, y1, x2, y2 in competitor_boxes:
87
- cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2)
88
- cv2.putText(img, "unclassified", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
 
 
 
 
 
89
 
90
  output_path = "/tmp/combined_output.jpg"
91
  cv2.imwrite(output_path, img)
@@ -95,30 +126,10 @@ def detect_combined(image):
95
  return temp_path, f"Error: {str(e)}"
96
 
97
  finally:
98
- os.remove(temp_path)
99
-
100
- def is_overlap(box1, boxes2, threshold=0.3):
101
- # Fungsi untuk deteksi overlap bounding box
102
- x1_min, y1_min, x1_max, y1_max = box1
103
- for b2 in boxes2:
104
- x2, y2, w2, h2 = b2
105
- x2_min = x2 - w2/2
106
- x2_max = x2 + w2/2
107
- y2_min = y2 - h2/2
108
- y2_max = y2 + h2/2
109
-
110
- # Hitung area overlap
111
- dx = min(x1_max, x2_max) - max(x1_min, x2_min)
112
- dy = min(y1_max, y2_max) - max(y1_min, y2_min)
113
- if (dx >= 0) and (dy >= 0):
114
- area_overlap = dx * dy
115
- area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
116
- if area_overlap / area_box1 > threshold:
117
- return True
118
- return False
119
-
120
- # ========== Fungsi untuk Deteksi Video ==========
121
 
 
122
  def convert_video_to_mp4(input_path, output_path):
123
  try:
124
  subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
@@ -130,7 +141,7 @@ def detect_objects_in_video(video_path):
130
  temp_output_path = "/tmp/output_video.mp4"
131
  temp_frames_dir = tempfile.mkdtemp()
132
  frame_count = 0
133
- previous_detections = {} # For storing previous frame's object detections
134
 
135
  try:
136
  # Convert video to MP4 if necessary
@@ -139,14 +150,14 @@ def detect_objects_in_video(video_path):
139
  if not video_path:
140
  return None, f"Video conversion error: {err}"
141
 
142
- # Read video and process frames
143
  video = cv2.VideoCapture(video_path)
144
  frame_rate = int(video.get(cv2.CAP_PROP_FPS))
145
  frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
146
  frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
147
  frame_size = (frame_width, frame_height)
148
 
149
- # VideoWriter for output video
150
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
151
  output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
152
 
@@ -155,54 +166,46 @@ def detect_objects_in_video(video_path):
155
  if not ret:
156
  break
157
 
158
- # Save frame temporarily for predictions
159
  frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
160
  cv2.imwrite(frame_path, frame)
161
 
162
- # Process predictions for the current frame
163
  predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
164
 
165
- # Track current frame detections
166
  current_detections = {}
167
  for prediction in predictions['predictions']:
168
  class_name = prediction['class']
169
  x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
170
- # Generate a unique ID for each detection based on the bounding box
171
  object_id = f"{class_name}_{x}_{y}_{w}_{h}"
172
-
173
- # Track each detected object individually
174
  if object_id not in current_detections:
175
  current_detections[object_id] = class_name
 
 
 
 
 
176
 
177
- # Draw bounding box for detected objects
178
- cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
179
- cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
180
-
181
- # Update counts for objects
182
  object_counts = {}
183
- for detection_id in current_detections.keys():
184
- class_name = current_detections[detection_id]
185
- object_counts[class_name] = object_counts.get(class_name, 0) + 1
186
 
187
- # Generate display text for counts
188
  count_text = ""
189
  total_product_count = 0
190
- for class_name, count in object_counts.items():
191
- count_text += f"{class_name}: {count}\n"
192
  total_product_count += count
193
  count_text += f"\nTotal Product: {total_product_count}"
194
-
195
- # Overlay the counts text onto the frame
196
  y_offset = 20
197
  for line in count_text.split("\n"):
198
- cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
199
- y_offset += 30 # Move down for next line
200
 
201
- # Write processed frame to output video
202
  output_video.write(frame)
203
  frame_count += 1
204
-
205
- # Update previous_detections for the next frame
206
  previous_detections = current_detections
207
 
208
  video.release()
@@ -213,7 +216,7 @@ def detect_objects_in_video(video_path):
213
  except Exception as e:
214
  return None, f"An error occurred: {e}"
215
 
216
- # ========== Gradio Interface ==========
217
  with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
218
  gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
219
 
@@ -224,11 +227,10 @@ with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", ne
224
  output_image = gr.Image(label="Detect Object")
225
  output_text = gr.Textbox(label="Counting Object")
226
  detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
227
-
228
  with gr.Column():
229
  input_video = gr.Video(label="Input Video")
230
  detect_video_button = gr.Button("Detect Video")
231
  output_video = gr.Video(label="Output Video")
232
  detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
233
 
234
- iface.launch()
 
6
  import requests
7
  import cv2
8
  import numpy as np
 
 
 
 
9
  import subprocess
10
 
11
+ # ========== Load Environment Variables ==========
12
  load_dotenv()
13
 
14
  # Roboflow Config
 
17
  project_name = os.getenv("ROBOFLOW_PROJECT")
18
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
19
 
20
+ # CountGD Config (Replace DINO-X)
21
+ # Set your CountGD API key in your .env file (e.g., COUNTGD_API_KEY=YourEncodedAPIKey)
22
+ COUNTGD_API_KEY = os.getenv("COUNTGD_API_KEY")
23
 
24
+ # Inisialisasi YOLO Model from Roboflow
25
  rf = Roboflow(api_key=rf_api_key)
26
  project = rf.workspace(workspace).project(project_name)
27
  yolo_model = project.version(model_version).model
28
 
29
+ # ========== Function to Check Overlap ==========
30
+ def is_overlap(box1, boxes2, threshold=0.3):
31
+ """
32
+ Checks if box1 (format: (x_min, y_min, x_max, y_max)) overlaps with any boxes in boxes2.
33
+ boxes2 is a list of YOLO bounding boxes in the format (x_center, y_center, width, height).
34
+ Returns True if the overlap ratio of box1 is greater than the threshold.
35
+ """
36
+ x1_min, y1_min, x1_max, y1_max = box1
37
+ for b2 in boxes2:
38
+ x_center, y_center, w2, h2 = b2
39
+ x2_min = x_center - w2 / 2
40
+ x2_max = x_center + w2 / 2
41
+ y2_min = y_center - h2 / 2
42
+ y2_max = y_center + h2 / 2
43
+
44
+ # Calculate overlap area
45
+ dx = min(x1_max, x2_max) - max(x1_min, x2_min)
46
+ dy = min(y1_max, y2_max) - max(y1_min, y2_min)
47
+ if dx > 0 and dy > 0:
48
+ area_overlap = dx * dy
49
+ area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
50
+ if area_box1 > 0 and (area_overlap / area_box1) > threshold:
51
+ return True
52
+ return False
53
 
54
+ # ========== Combined Object Detection Function ==========
55
  def detect_combined(image):
56
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
57
  image.save(temp_file, format="JPEG")
58
  temp_path = temp_file.name
59
 
60
  try:
61
+ # ===== YOLO Detection (Nestlé products) =====
62
  yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
63
  nestle_class_count = {}
64
+ nestle_boxes = [] # List to hold YOLO bounding boxes (format: x_center, y_center, width, height)
65
  for pred in yolo_pred['predictions']:
66
  class_name = pred['class']
67
  nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
68
  nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
69
  total_nestle = sum(nestle_class_count.values())
70
 
71
+ # ===== CountGD Detection (Competitor products) =====
72
  url = "https://api.landing.ai/v1/tools/text-to-object-detection"
73
  files = {"image": open(temp_path, "rb")}
74
  data = {"prompts": ["mixed box"], "model": "countgd"}
75
+ headers = {"Authorization": f"Basic {COUNTGD_API_KEY}"}
76
  response = requests.post(url, files=files, data=data, headers=headers)
77
  result = response.json()
78
 
79
  competitor_class_count = {}
80
+ competitor_boxes = [] # List to hold CountGD bounding boxes (format: x_min, y_min, x_max, y_max)
81
  if 'data' in result:
82
  for obj in result['data'][0]:
83
  if 'bounding_box' in obj:
84
+ # CountGD returns bounding_box as [x_min, y_min, x_max, y_max]
85
+ x1, y1, x2, y2 = obj['bounding_box']
86
+ countgd_box = (x1, y1, x2, y2)
87
+ # Only add CountGD detection if it does NOT significantly overlap with any YOLO detection
88
+ if not is_overlap(countgd_box, nestle_boxes, threshold=0.3):
89
+ class_name = "unclassified" # Generic label for competitor objects
90
+ competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
91
+ competitor_boxes.append(countgd_box)
92
  total_competitor = sum(competitor_class_count.values())
93
 
94
+ # ===== Format Output Text =====
95
  result_text = "Product Nestlé\n\n"
96
  for class_name, count in nestle_class_count.items():
97
  result_text += f"{class_name}: {count}\n"
98
  result_text += f"\nTotal Products Nestlé: {total_nestle}\n\n"
99
+ if total_competitor:
100
+ result_text += f"Total Unclassified Products: {total_competitor}\n"
101
+ else:
102
+ result_text += "No Unclassified Products detected\n"
103
 
104
+ # ===== Visualization =====
105
  img = cv2.imread(temp_path)
106
+ # Draw YOLO boxes in green
107
  for pred in yolo_pred['predictions']:
108
  x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
109
+ pt1 = (int(x - w/2), int(y - h/2))
110
+ pt2 = (int(x + w/2), int(y + h/2))
111
+ cv2.rectangle(img, pt1, pt2, (0, 255, 0), 2)
112
+ cv2.putText(img, pred['class'], (pt1[0], pt1[1]-10),
113
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,255,0), 3)
114
+ # Draw CountGD boxes in red
115
+ for box in competitor_boxes:
116
+ x1, y1, x2, y2 = box
117
+ cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
118
+ cv2.putText(img, "unclassified", (int(x1), int(y1)-10),
119
+ cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0,0,255), 3)
120
 
121
  output_path = "/tmp/combined_output.jpg"
122
  cv2.imwrite(output_path, img)
 
126
  return temp_path, f"Error: {str(e)}"
127
 
128
  finally:
129
+ if os.path.exists(temp_path):
130
+ os.remove(temp_path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
+ # ========== Video Detection Functions ==========
133
  def convert_video_to_mp4(input_path, output_path):
134
  try:
135
  subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
 
141
  temp_output_path = "/tmp/output_video.mp4"
142
  temp_frames_dir = tempfile.mkdtemp()
143
  frame_count = 0
144
+ previous_detections = {} # For storing previous frame's detections
145
 
146
  try:
147
  # Convert video to MP4 if necessary
 
150
  if not video_path:
151
  return None, f"Video conversion error: {err}"
152
 
153
+ # Open video for processing
154
  video = cv2.VideoCapture(video_path)
155
  frame_rate = int(video.get(cv2.CAP_PROP_FPS))
156
  frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
157
  frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
158
  frame_size = (frame_width, frame_height)
159
 
160
+ # Setup VideoWriter for output
161
  fourcc = cv2.VideoWriter_fourcc(*'mp4v')
162
  output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
163
 
 
166
  if not ret:
167
  break
168
 
169
+ # Save frame for YOLO detection
170
  frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
171
  cv2.imwrite(frame_path, frame)
172
 
173
+ # YOLO detection on the frame
174
  predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
175
 
176
+ # Draw YOLO detections on the frame
177
  current_detections = {}
178
  for prediction in predictions['predictions']:
179
  class_name = prediction['class']
180
  x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
 
181
  object_id = f"{class_name}_{x}_{y}_{w}_{h}"
 
 
182
  if object_id not in current_detections:
183
  current_detections[object_id] = class_name
184
+ pt1 = (int(x - w/2), int(y - h/2))
185
+ pt2 = (int(x + w/2), int(y + h/2))
186
+ cv2.rectangle(frame, pt1, pt2, (0,255,0), 2)
187
+ cv2.putText(frame, class_name, (pt1[0], pt1[1]-10),
188
+ cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
189
 
190
+ # Count objects and overlay text
 
 
 
 
191
  object_counts = {}
192
+ for detection_id in current_detections:
193
+ cls = current_detections[detection_id]
194
+ object_counts[cls] = object_counts.get(cls, 0) + 1
195
 
 
196
  count_text = ""
197
  total_product_count = 0
198
+ for cls, count in object_counts.items():
199
+ count_text += f"{cls}: {count}\n"
200
  total_product_count += count
201
  count_text += f"\nTotal Product: {total_product_count}"
 
 
202
  y_offset = 20
203
  for line in count_text.split("\n"):
204
+ cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255,255,255), 2)
205
+ y_offset += 30
206
 
 
207
  output_video.write(frame)
208
  frame_count += 1
 
 
209
  previous_detections = current_detections
210
 
211
  video.release()
 
216
  except Exception as e:
217
  return None, f"An error occurred: {e}"
218
 
219
+ # ========== Gradio Interface ==========
220
  with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
221
  gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
222
 
 
227
  output_image = gr.Image(label="Detect Object")
228
  output_text = gr.Textbox(label="Counting Object")
229
  detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
 
230
  with gr.Column():
231
  input_video = gr.Video(label="Input Video")
232
  detect_video_button = gr.Button("Detect Video")
233
  output_video = gr.Video(label="Output Video")
234
  detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
235
 
236
+ iface.launch()