Delete app-error.py
Browse files- app-error.py +0 -275
app-error.py
DELETED
@@ -1,275 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from dotenv import load_dotenv
|
3 |
-
from roboflow import Roboflow
|
4 |
-
import tempfile
|
5 |
-
import os
|
6 |
-
import requests
|
7 |
-
import cv2
|
8 |
-
import numpy as np
|
9 |
-
from dds_cloudapi_sdk import Config, Client
|
10 |
-
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
|
11 |
-
from dds_cloudapi_sdk.tasks.types import DetectionTarget
|
12 |
-
from dds_cloudapi_sdk import TextPrompt
|
13 |
-
import subprocess
|
14 |
-
|
15 |
-
# ========== Konfigurasi ==========
|
16 |
-
load_dotenv()
|
17 |
-
|
18 |
-
# Roboflow Config
|
19 |
-
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
|
20 |
-
workspace = os.getenv("ROBOFLOW_WORKSPACE")
|
21 |
-
project_name = os.getenv("ROBOFLOW_PROJECT")
|
22 |
-
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
23 |
-
|
24 |
-
# DINO-X Config
|
25 |
-
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
|
26 |
-
DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk" # Customize sesuai produk kompetitor : food . drink
|
27 |
-
|
28 |
-
# Inisialisasi Model
|
29 |
-
rf = Roboflow(api_key=rf_api_key)
|
30 |
-
project = rf.workspace(workspace).project(project_name)
|
31 |
-
yolo_model = project.version(model_version).model
|
32 |
-
|
33 |
-
dinox_config = Config(DINOX_API_KEY)
|
34 |
-
dinox_client = Client(dinox_config)
|
35 |
-
|
36 |
-
# ========== Fungsi Deteksi Kombinasi ==========
|
37 |
-
def detect_combined(image):
|
38 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
39 |
-
image.save(temp_file, format="JPEG")
|
40 |
-
temp_path = temp_file.name
|
41 |
-
|
42 |
-
try:
|
43 |
-
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
|
44 |
-
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
45 |
-
|
46 |
-
# Hitung per class Nestlé
|
47 |
-
nestle_class_count = {}
|
48 |
-
nestle_boxes = []
|
49 |
-
for pred in yolo_pred['predictions']:
|
50 |
-
class_name = pred['class']
|
51 |
-
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
52 |
-
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
53 |
-
|
54 |
-
total_nestle = sum(nestle_class_count.values())
|
55 |
-
|
56 |
-
# ========== [2] DINO-X: Deteksi Kompetitor ==========
|
57 |
-
image_url = dinox_client.upload_file(temp_path)
|
58 |
-
task = DinoxTask(
|
59 |
-
image_url=image_url,
|
60 |
-
prompts=[TextPrompt(text=DINOX_PROMPT)],
|
61 |
-
bbox_threshold=0.25,
|
62 |
-
targets=[DetectionTarget.BBox]
|
63 |
-
)
|
64 |
-
dinox_client.run_task(task)
|
65 |
-
dinox_pred = task.result.objects
|
66 |
-
|
67 |
-
# Filter & Hitung Kompetitor
|
68 |
-
competitor_class_count = {}
|
69 |
-
competitor_boxes = []
|
70 |
-
for obj in dinox_pred:
|
71 |
-
dinox_box = obj.bbox
|
72 |
-
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
|
73 |
-
if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
|
74 |
-
class_name = obj.category.strip().lower() # Normalisasi nama kelas
|
75 |
-
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
|
76 |
-
competitor_boxes.append({
|
77 |
-
"class": class_name,
|
78 |
-
"box": dinox_box,
|
79 |
-
"confidence": obj.score
|
80 |
-
})
|
81 |
-
|
82 |
-
total_competitor = sum(competitor_class_count.values())
|
83 |
-
|
84 |
-
# ========== [3] Format Output ==========
|
85 |
-
result_text = "Product Nestle\n\n"
|
86 |
-
for class_name, count in nestle_class_count.items():
|
87 |
-
result_text += f"{class_name}: {count}\n"
|
88 |
-
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
|
89 |
-
|
90 |
-
#result_text += "Competitor Products\n\n"
|
91 |
-
if competitor_class_count:
|
92 |
-
result_text += f"Total Unclassified Products: {total_competitor}\n" # Hanya total, tidak per kelas
|
93 |
-
else:
|
94 |
-
result_text += "No Unclassified Products detected\n"
|
95 |
-
|
96 |
-
# ========== [4] Visualisasi ==========
|
97 |
-
img = cv2.imread(temp_path)
|
98 |
-
|
99 |
-
# Nestlé (Hijau)
|
100 |
-
for pred in yolo_pred['predictions']:
|
101 |
-
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
102 |
-
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
103 |
-
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)),
|
104 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
105 |
-
|
106 |
-
# Kompetitor (Merah) dengan nama 'unclassified'
|
107 |
-
for comp in competitor_boxes:
|
108 |
-
x1, y1, x2, y2 = comp['box']
|
109 |
-
|
110 |
-
# Define a list of target classes to rename
|
111 |
-
unclassified_classes = ["beverage", "cans", "bottle", "boxed milk", "milk"]
|
112 |
-
|
113 |
-
# Normalize the class name to be case-insensitive and check if it's in the unclassified list
|
114 |
-
display_name = "unclassified" if any(class_name in comp['class'].lower() for class_name in unclassified_classes) else comp['class']
|
115 |
-
|
116 |
-
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
117 |
-
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
|
118 |
-
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
119 |
-
|
120 |
-
output_path = "/tmp/combined_output.jpg"
|
121 |
-
cv2.imwrite(output_path, img)
|
122 |
-
|
123 |
-
return output_path, result_text
|
124 |
-
|
125 |
-
except Exception as e:
|
126 |
-
return temp_path, f"Error: {str(e)}"
|
127 |
-
finally:
|
128 |
-
os.remove(temp_path)
|
129 |
-
|
130 |
-
def is_overlap(box1, boxes2, threshold=0.3):
|
131 |
-
# Fungsi untuk deteksi overlap bounding box
|
132 |
-
x1_min, y1_min, x1_max, y1_max = box1
|
133 |
-
for b2 in boxes2:
|
134 |
-
x2, y2, w2, h2 = b2
|
135 |
-
x2_min = x2 - w2/2
|
136 |
-
x2_max = x2 + w2/2
|
137 |
-
y2_min = y2 - h2/2
|
138 |
-
y2_max = y2 + h2/2
|
139 |
-
|
140 |
-
# Hitung area overlap
|
141 |
-
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
142 |
-
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
143 |
-
if (dx >= 0) and (dy >= 0):
|
144 |
-
area_overlap = dx * dy
|
145 |
-
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
|
146 |
-
if area_overlap / area_box1 > threshold:
|
147 |
-
return True
|
148 |
-
return False
|
149 |
-
|
150 |
-
# ========== Fungsi untuk Deteksi Video ==========
|
151 |
-
|
152 |
-
def convert_video_to_mp4(input_path, output_path):
|
153 |
-
try:
|
154 |
-
subprocess.run(['ffmpeg', '-i', input_path, '-vcodec', 'libx264', '-acodec', 'aac', output_path], check=True)
|
155 |
-
return output_path
|
156 |
-
except subprocess.CalledProcessError as e:
|
157 |
-
return None, f"Error converting video: {e}"
|
158 |
-
|
159 |
-
def detect_objects_in_video(video_path):
|
160 |
-
temp_output_path = "/tmp/output_video.mp4"
|
161 |
-
temp_frames_dir = tempfile.mkdtemp()
|
162 |
-
frame_count = 0
|
163 |
-
previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya
|
164 |
-
|
165 |
-
try:
|
166 |
-
# Convert video to MP4 if necessary
|
167 |
-
if not video_path.endswith(".mp4"):
|
168 |
-
video_path, err = convert_video_to_mp4(video_path, temp_output_path)
|
169 |
-
if not video_path:
|
170 |
-
return None, f"Video conversion error: {err}"
|
171 |
-
|
172 |
-
# Read video and process frames
|
173 |
-
video = cv2.VideoCapture(video_path)
|
174 |
-
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
|
175 |
-
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
176 |
-
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
177 |
-
frame_size = (frame_width, frame_height)
|
178 |
-
|
179 |
-
# VideoWriter for output video
|
180 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
181 |
-
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
|
182 |
-
|
183 |
-
while True:
|
184 |
-
ret, frame = video.read()
|
185 |
-
if not ret:
|
186 |
-
break
|
187 |
-
|
188 |
-
# Save frame temporarily for predictions
|
189 |
-
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
|
190 |
-
cv2.imwrite(frame_path, frame)
|
191 |
-
|
192 |
-
# Process predictions for the current frame
|
193 |
-
predictions = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
|
194 |
-
|
195 |
-
# Track current frame detections
|
196 |
-
current_detections = {}
|
197 |
-
for prediction in predictions['predictions']:
|
198 |
-
class_name = prediction['class']
|
199 |
-
x, y, w, h = prediction['x'], prediction['y'], prediction['width'], prediction['height']
|
200 |
-
# Generate a unique ID for each detection (can use coordinates or other method)
|
201 |
-
object_id = f"{class_name}_{x}_{y}"
|
202 |
-
|
203 |
-
if object_id not in current_detections:
|
204 |
-
current_detections[object_id] = class_name
|
205 |
-
|
206 |
-
# Draw bounding box for detected objects
|
207 |
-
cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
208 |
-
cv2.putText(frame, class_name, (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
|
209 |
-
|
210 |
-
# Calculate the changes from previous detections
|
211 |
-
removed_objects = set(previous_detections.keys()) - set(current_detections.keys())
|
212 |
-
new_objects = set(current_detections.keys()) - set(previous_detections.keys())
|
213 |
-
|
214 |
-
# Update counts for objects
|
215 |
-
object_counts = {}
|
216 |
-
for detection_id in current_detections.keys():
|
217 |
-
class_name = current_detections[detection_id]
|
218 |
-
object_counts[class_name] = object_counts.get(class_name, 0) + 1
|
219 |
-
|
220 |
-
# Update object counts based on removed objects
|
221 |
-
for detection_id in removed_objects:
|
222 |
-
class_name = previous_detections[detection_id]
|
223 |
-
if class_name in object_counts:
|
224 |
-
object_counts[class_name] -= 1
|
225 |
-
if object_counts[class_name] <= 0:
|
226 |
-
del object_counts[class_name]
|
227 |
-
|
228 |
-
# Generate display text for counts
|
229 |
-
count_text = ""
|
230 |
-
total_product_count = 0
|
231 |
-
for class_name, count in object_counts.items():
|
232 |
-
count_text += f"{class_name}: {count}\n"
|
233 |
-
total_product_count += count
|
234 |
-
count_text += f"\nTotal Product: {total_product_count}"
|
235 |
-
|
236 |
-
# Overlay the counts text onto the frame
|
237 |
-
y_offset = 20
|
238 |
-
for line in count_text.split("\n"):
|
239 |
-
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
|
240 |
-
y_offset += 30 # Move down for next line
|
241 |
-
|
242 |
-
# Write processed frame to output video
|
243 |
-
output_video.write(frame)
|
244 |
-
frame_count += 1
|
245 |
-
|
246 |
-
# Update previous_detections for the next frame
|
247 |
-
previous_detections = current_detections
|
248 |
-
|
249 |
-
video.release()
|
250 |
-
output_video.release()
|
251 |
-
|
252 |
-
return temp_output_path
|
253 |
-
|
254 |
-
except Exception as e:
|
255 |
-
return None, f"An error occurred: {e}"
|
256 |
-
|
257 |
-
# ========== Gradio Interface ==========
|
258 |
-
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
259 |
-
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
260 |
-
|
261 |
-
with gr.Row():
|
262 |
-
with gr.Column():
|
263 |
-
input_image = gr.Image(type="pil", label="Input Image")
|
264 |
-
detect_image_button = gr.Button("Detect Image")
|
265 |
-
output_image = gr.Image(label="Detect Object")
|
266 |
-
output_text = gr.Textbox(label="Counting Object")
|
267 |
-
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
|
268 |
-
|
269 |
-
with gr.Column():
|
270 |
-
input_video = gr.Video(label="Input Video")
|
271 |
-
detect_video_button = gr.Button("Detect Video")
|
272 |
-
output_video = gr.Video(label="Output Video")
|
273 |
-
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
|
274 |
-
|
275 |
-
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|