import gradio as gr from dotenv import load_dotenv from roboflow import Roboflow import tempfile import os import requests import cv2 import numpy as np from dds_cloudapi_sdk import Config, Client from dds_cloudapi_sdk.tasks.dinox import DinoxTask from dds_cloudapi_sdk.tasks.types import DetectionTarget from dds_cloudapi_sdk import TextPrompt import supervision as sv # ========== Konfigurasi ========== load_dotenv() # Roboflow Config rf_api_key = os.getenv("ROBOFLOW_API_KEY") workspace = os.getenv("ROBOFLOW_WORKSPACE") project_name = os.getenv("ROBOFLOW_PROJECT") model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) # DINO-X Config DINOX_API_KEY = os.getenv("DINO_X_API_KEY") DINOX_PROMPT = "beverage . food . drink . bottle" # Customize sesuai produk kompetitor # Inisialisasi Model rf = Roboflow(api_key=rf_api_key) project = rf.workspace(workspace).project(project_name) yolo_model = project.version(model_version).model dinox_config = Config(DINOX_API_KEY) dinox_client = Client(dinox_config) # ========== Fungsi Deteksi Kombinasi ========== def detect_combined(image): with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: image.save(temp_file, format="JPEG") temp_path = temp_file.name try: # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== yolo_pred = yolo_model.predict(temp_path, confidence=60, overlap=80).json() # Hitung per class Nestlé nestle_class_count = {} nestle_boxes = [] for pred in yolo_pred['predictions']: class_name = pred['class'] nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) total_nestle = sum(nestle_class_count.values()) # ========== [2] DINO-X: Deteksi Kompetitor ========== image_url = dinox_client.upload_file(temp_path) task = DinoxTask( image_url=image_url, prompts=[TextPrompt(text=DINOX_PROMPT)], bbox_threshold=0.25, targets=[DetectionTarget.BBox] ) dinox_client.run_task(task) dinox_pred = task.result.objects # Filter & Hitung Kompetitor competitor_class_count = {} competitor_boxes = [] for obj in dinox_pred: dinox_box = obj.bbox if not is_overlap(dinox_box, nestle_boxes): class_name = obj.category.strip().lower() # Normalisasi nama kelas competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 competitor_boxes.append({ "class": class_name, "box": dinox_box, "confidence": obj.score }) total_competitor = sum(competitor_class_count.values()) # ========== [3] Format Output ========== result_text = "Product Nestle\n\n" for class_name, count in nestle_class_count.items(): result_text += f"{class_name}: {count}\n" result_text += f"\nTotal Product Nestle: {total_nestle}\n\n" result_text += "Competitor Products\n\n" if competitor_class_count: for class_name, count in competitor_class_count.items(): result_text += f"{class_name}: {count}\n" else: result_text += "No competitors detected\n" result_text += f"\nTotal Competitor: {total_competitor}" # ========== [4] Visualisasi ========== img = cv2.imread(temp_path) # Nestlé (Hijau) for pred in yolo_pred['predictions']: x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2) cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2) # Kompetitor (Merah) for comp in competitor_boxes: x1, y1, x2, y2 = comp['box'] cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,0,255), 2) cv2.putText(img, f"{comp['class']} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,255), 2) output_path = "/tmp/combined_output.jpg" cv2.imwrite(output_path, img) return output_path, result_text except Exception as e: return temp_path, f"Error: {str(e)}" finally: os.remove(temp_path) def is_overlap(box1, boxes2, threshold=0.3): # Fungsi untuk deteksi overlap bounding box x1_min, y1_min, x1_max, y1_max = box1 for b2 in boxes2: x2, y2, w2, h2 = b2 x2_min = x2 - w2/2 x2_max = x2 + w2/2 y2_min = y2 - h2/2 y2_max = y2 + h2/2 # Hitung area overlap dx = min(x1_max, x2_max) - max(x1_min, x2_min) dy = min(y1_max, y2_max) - max(y1_min, y2_min) if (dx >= 0) and (dy >= 0): area_overlap = dx * dy area_box1 = (x1_max - x1_min) * (y1_max - y1_min) if area_overlap / area_box1 > threshold: return True return False # ========== Gradio Interface ========== with gr.Blocks() as iface: with gr.Row(): input_image = gr.Image(type="pil", label="Input Image") output_image = gr.Image(label="Detection Result") output_text = gr.Textbox(label="Product Counts") detect_button = gr.Button("Detect Products") detect_button.click( fn=detect_combined, inputs=input_image, outputs=[output_image, output_text] ) iface.launch()