File size: 3,732 Bytes
e2c01c3
ef0e477
cf5502d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101


import faiss
import fitz  # PyMuPDF
import pandas as pd
from transformers import DPRQuestionEncoder, DPRContextEncoder, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer
from docx import Document
import streamlit as st
import os
from bs4 import BeautifulSoup

# Initialize models and FAISS index
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
index = faiss.IndexFlatL2(384)  # 384-dimensional embeddings for this model
document_texts = []
document_mapping = {}

# Function to load and convert files to text
def load_text_from_files(file_path):
    if file_path.endswith(".pdf"):
        return extract_text_from_pdf(file_path)
    elif file_path.endswith(".docx"):
        return extract_text_from_docx(file_path)
    elif file_path.endswith(".csv"):
        return extract_text_from_csv(file_path)
    elif file_path.endswith(".xlsx"):
        return extract_text_from_xlsx(file_path)
    elif file_path.endswith(".html"):
        return extract_text_from_html(file_path)
    else:
        return ""

def extract_text_from_pdf(file_path):
    text = ""
    with fitz.open(file_path) as doc:
        for page in doc:
            text += page.get_text()
    return text

def extract_text_from_docx(file_path):
    doc = Document(file_path)
    return " ".join([para.text for para in doc.paragraphs])

def extract_text_from_csv(file_path):
    df = pd.read_csv(file_path)
    return " ".join(df.apply(lambda row: " ".join(map(str, row)), axis=1))

def extract_text_from_xlsx(file_path):
    df = pd.read_excel(file_path)
    return " ".join(df.apply(lambda row: " ".join(map(str, row)), axis=1))

def extract_text_from_html(file_path):
    with open(file_path, "r") as file:
        soup = BeautifulSoup(file, "html.parser")
    return soup.get_text()

# Indexing uploaded documents
def index_documents(uploaded_files):
    global document_texts, document_mapping
    for file in uploaded_files:
        file_path = os.path.join("/content/temp/", file.name)
        with open(file_path, "wb") as f:
            f.write(file.read())
        text = load_text_from_files(file_path)
        if text:
            document_texts.append(text)
            embeddings = embedding_model.encode([text])
            index.add(embeddings)
            document_mapping[len(document_texts) - 1] = text

# Load retrieval and generation models
question_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
context_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
question_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
generator = pipeline("text-generation", model="gpt2")

# RAG pipeline function
def retrieve_and_generate(query):
    query_embeddings = embedding_model.encode([query])
    _, I = index.search(query_embeddings, k=5)  # Top-5 relevant contexts
    retrieved_texts = [document_mapping[idx] for idx in I[0]]
    context = " ".join(retrieved_texts)
    response = generator(f"{query} [SEP] {context}", max_length=150, num_return_sequences=1)
    return response[0]['generated_text']

# Streamlit interface
st.title("Electrical Engineering RAG System")
st.write("Upload your files, ask questions, and get responses based on your data.")

uploaded_files = st.file_uploader("Upload Documents", accept_multiple_files=True, type=["pdf", "docx", "csv", "xlsx", "html"])

if uploaded_files:
    index_documents(uploaded_files)
    st.write("Files uploaded successfully! You can now ask questions.")

    user_query = st.text_input("Ask a question:")
    if user_query:
        response = retrieve_and_generate(user_query)
        st.write("Answer:", response)