import faiss import fitz # PyMuPDF import pandas as pd from transformers import DPRQuestionEncoder, DPRContextEncoder, AutoTokenizer, pipeline from sentence_transformers import SentenceTransformer from docx import Document import streamlit as st import os from bs4 import BeautifulSoup # Initialize models and FAISS index embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") index = faiss.IndexFlatL2(384) # 384-dimensional embeddings for this model document_texts = [] document_mapping = {} # Function to load and convert files to text def load_text_from_files(file_path): if file_path.endswith(".pdf"): return extract_text_from_pdf(file_path) elif file_path.endswith(".docx"): return extract_text_from_docx(file_path) elif file_path.endswith(".csv"): return extract_text_from_csv(file_path) elif file_path.endswith(".xlsx"): return extract_text_from_xlsx(file_path) elif file_path.endswith(".html"): return extract_text_from_html(file_path) else: return "" def extract_text_from_pdf(file_path): text = "" with fitz.open(file_path) as doc: for page in doc: text += page.get_text() return text def extract_text_from_docx(file_path): doc = Document(file_path) return " ".join([para.text for para in doc.paragraphs]) def extract_text_from_csv(file_path): df = pd.read_csv(file_path) return " ".join(df.apply(lambda row: " ".join(map(str, row)), axis=1)) def extract_text_from_xlsx(file_path): df = pd.read_excel(file_path) return " ".join(df.apply(lambda row: " ".join(map(str, row)), axis=1)) def extract_text_from_html(file_path): with open(file_path, "r") as file: soup = BeautifulSoup(file, "html.parser") return soup.get_text() # Indexing uploaded documents def index_documents(uploaded_files): global document_texts, document_mapping for file in uploaded_files: file_path = os.path.join("/content/temp/", file.name) with open(file_path, "wb") as f: f.write(file.read()) text = load_text_from_files(file_path) if text: document_texts.append(text) embeddings = embedding_model.encode([text]) index.add(embeddings) document_mapping[len(document_texts) - 1] = text # Load retrieval and generation models question_encoder = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base") context_encoder = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base") question_tokenizer = AutoTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base") generator = pipeline("text-generation", model="gpt2") # RAG pipeline function def retrieve_and_generate(query): query_embeddings = embedding_model.encode([query]) _, I = index.search(query_embeddings, k=5) # Top-5 relevant contexts retrieved_texts = [document_mapping[idx] for idx in I[0]] context = " ".join(retrieved_texts) response = generator(f"{query} [SEP] {context}", max_length=150, num_return_sequences=1) return response[0]['generated_text'] # Streamlit interface st.title("Electrical Engineering RAG System") st.write("Upload your files, ask questions, and get responses based on your data.") uploaded_files = st.file_uploader("Upload Documents", accept_multiple_files=True, type=["pdf", "docx", "csv", "xlsx", "html"]) if uploaded_files: index_documents(uploaded_files) st.write("Files uploaded successfully! You can now ask questions.") user_query = st.text_input("Ask a question:") if user_query: response = retrieve_and_generate(user_query) st.write("Answer:", response)