import streamlit as st from transformers import ( MarianMTModel, MarianTokenizer, GPT2LMHeadModel, GPT2Tokenizer, pipeline ) st.title("Multi Chatbot") models = { "English to French": { "name": "Helsinki-NLP/opus-mt-en-fr", "description": "Translate English text to French." }, "Sentiment Analysis": { "name": "distilbert-base-uncased-finetuned-sst-2-english", "description": "Analyze the sentiment of input text." }, "Story Generator": { "name": "distilgpt2", "description": "Generate creative stories based on input." } } st.sidebar.header("Choose a Model") selected_model_key = st.sidebar.radio("Select a Model:", list(models.keys())) model_name = models[selected_model_key]["name"] model_description = models[selected_model_key]["description"] st.sidebar.markdown(f"### Model Description\n{model_description}") try: if selected_model_key == "English to French": st.write("Loading English to French model...") tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) st.write("English to French model loaded successfully.") elif selected_model_key == "Sentiment Analysis": st.write("Loading Sentiment Analysis model...") sentiment_analyzer = pipeline("sentiment-analysis", model=model_name) st.write("Sentiment Analysis model loaded successfully.") elif selected_model_key == "Story Generator": st.write("Loading Story Generator model...") tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2") model = GPT2LMHeadModel.from_pretrained("distilgpt2") tokenizer.pad_token = tokenizer.eos_token st.write("Story Generator model loaded successfully.") except Exception as e: st.error(f"Failed to load the model: {e}") user_input = st.text_input("Enter your query:") if user_input: if selected_model_key == "English to French": try: inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True) outputs = model.generate(inputs["input_ids"], max_length=150, num_return_sequences=1, no_repeat_ngram_size=2) bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write(f"Translated Text: {bot_response}") except Exception as e: st.error(f"Error during translation: {e}") elif selected_model_key == "Sentiment Analysis": try: result = sentiment_analyzer(user_input)[0] st.write(f"Sentiment: {result['label']}") st.write(f"Confidence: {result['score']:.2f}") except Exception as e: st.error(f"Error during sentiment analysis: {e}") elif selected_model_key == "Story Generator": try: inputs = tokenizer(user_input, return_tensors="pt", truncation=True, padding=True) outputs = model.generate(inputs["input_ids"], max_length=500, num_return_sequences=1, no_repeat_ngram_size=2, temperature=0.7) bot_response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write(f"Generated Story: {bot_response}") except Exception as e: st.error(f"Error during story generation: {e}")