File size: 8,806 Bytes
3bc69b8
 
 
 
 
6e6426e
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
3bc69b8
 
 
 
 
 
 
 
 
 
6e6426e
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc69b8
 
 
6e6426e
 
 
 
 
 
3bc69b8
 
 
 
 
 
 
6e6426e
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
 
 
 
 
 
 
 
 
 
 
 
 
3bc69b8
 
 
 
 
 
 
6e6426e
3bc69b8
6e6426e
 
 
 
3bc69b8
 
6e6426e
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
 
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
3bc69b8
 
6e6426e
 
 
 
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
 
 
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e6426e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
from flask import Flask, request, jsonify,send_file, Response
from flask_cors import CORS
import logging
import gc
import os
from threading import Thread
from flask_sse import sse
from io import BytesIO
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
import numpy as np
from run.utils_ootd import get_mask_location
from run.cloths_db import cloths_map, modeL_db

from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_dc import OOTDiffusionDC

PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))

from queue import Queue


#run python garbage collector and nvidia cuda clear memory
gc.collect()
torch.cuda.empty_cache()


# Setup Flask server
app = Flask(__name__)
CORS(app, origins="*")  # Enable CORS for the entire app
app.config["REDIS_URL"] = "redis://localhost:6379"
app.register_blueprint(sse, url_prefix='/stream')


logger = logging.getLogger()


openpose_model = OpenPose(0)
parsing_model_dc = Parsing(0)
ootd_model_dc = OOTDiffusionDC(0)

example_path = os.path.join(os.path.dirname(__file__), 'examples')
garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment')

openpose_model.preprocessor.body_estimation.model.to('cuda')

ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')

category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']



# Ensure this directory exists
UPLOAD_FOLDER = 'temp_images'
if not os.path.exists(UPLOAD_FOLDER):
    os.makedirs(UPLOAD_FOLDER)


# progress_queue = Queue()

# def progress_callback(step, total_steps):
#     if total_steps is not None and total_steps > 0:
#         progress = int((step + 1) / total_steps * 100)
#         progress_queue.put(progress)
#     else:
#         progress_queue.put(step + 1)

def progress_callback(step, total_steps):
    if total_steps is not None and total_steps > 0:
        progress = int((step + 1) / total_steps * 100)
        sse.publish({"progress": progress}, type='progress')
    else:
        sse.publish({"step": step + 1}, type='progress')


def process_dc(vton_img, garm_img, category):
    model_type = 'dc'

    if category == 'Upper-body':
        category = 0
    elif category == 'Lower-body':
        category = 1
    else:
        category = 2

    with torch.no_grad():
        # openpose_model.preprocessor.body_estimation.model.to('cuda')
        # ootd_model_dc.pipe.to('cuda')
        # ootd_model_dc.image_encoder.to('cuda')
        # ootd_model_dc.text_encoder.to('cuda')
        
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        keypoints = openpose_model(vton_img.resize((384, 512)))

        print(len(keypoints["pose_keypoints_2d"]))
        print(keypoints["pose_keypoints_2d"])



        left_point = keypoints["pose_keypoints_2d"][2]
        right_point = keypoints["pose_keypoints_2d"][5]

        neck_point = keypoints["pose_keypoints_2d"][1]
        hip_point = keypoints["pose_keypoints_2d"][8]



        print(f'left shoulder - {left_point}')
        print(f'right shoulder - {right_point}')
 
        # #find disctance using Euclidian distance
        shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)

        height_pixels  = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2


        # # Assuming an average human height 
        average_height_cm = 172.72 *1.5

        # Conversion factor from pixels to cm
        conversion_factor = average_height_cm / height_pixels

        # Convert shoulder width to real-world units
        shoulder_width_cm = shoulder_width_pixels * conversion_factor

        print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
        print(f'Estimated height (in pixels): {height_pixels}')
        print(f'Conversion factor (pixels to cm): {conversion_factor}')
        print(f'Shoulder width (in cm): {shoulder_width_cm}')
        print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')


        model_parse,_ = parsing_model_dc(vton_img.resize((384, 512)))
     

        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)

      

        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        # Save the resized masks
        # mask.save("mask_resized.png")
        # mask_gray.save("mask_gray_resized.png")
        
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)
        # masked_vton_img.save("masked_vton_img.png")

        print(f'category is {category}')

        # images = ootd_model_dc(
        #     model_type=model_type,
        #     category=category_dict[category],
        #     image_garm=garm_img,
        #     image_vton=masked_vton_img,
        #     mask=mask,
        #     image_ori=vton_img,
        #     num_samples=3,
        #     num_steps=20,
        #     image_scale=  2.0,
        #     seed=-1,
        # )

        images = ootd_model_dc(
            model_type=model_type,
            category=category_dict[category],
            image_garm=garm_img,
            image_vton=masked_vton_img,
            mask=mask,
            image_ori=vton_img,
            num_samples=2,
            num_steps=10,
            image_scale=2.0,
            seed=42,
            progress_callback=progress_callback,
            progress_interval=1,  # Update progress every step
        )


    return images



@app.route('/')
def root():
    try:
        response_data = {"message": "This is VTR API v1.0"}
        return jsonify(response_data)
    except Exception as e:
        logger.error(f"Root endpoint error: {str(e)}")
        response_data = {"message": "Internal server Error"}
        return jsonify(response_data), 500

@app.route('/stream')
def stream():
    return Response(sse.stream(), content_type='text/event-stream')

#write Flask api name "generate" with POST method that will input 2 images and return 1 image   
@app.route('/generate', methods=['POST'])
def generate():
    """
    A Flask route that handles a POST request to the '/generate' endpoint.
    It expects two files, 'garm_img' and 'vton_img', to be included in the request.
    The function calls the 'process_dc' function with the provided files and the
    category 'Upper-body'. It then sends the processed image as a file with the
    mimetype 'image/png' and returns it to the client. If any exception occurs,
    the function logs the error and returns a JSON response with a status code of
    500.

    Parameters:
        None

    Returns:
        A Flask response object with the processed image as a file.

    Raises:
        None
    """

    #    if category == 'Upper-body':
    #     category = 0
    # elif category == 'Lower-body':
    #     category = 1
    # else:
    #     category = 2

    try:
        cloths_type = ["Upper-body", "Lower-body", "Dress"]
        garm_img = request.files['garm_img']
        vton_img = request.files['vton_img']
        cat = request.form['category']

        print(f'category is {cat}')

        category =cloths_type[int(cat)] # Default to Upper-body if not specified

        # Save the uploaded files
        garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
        vton_path = os.path.join(UPLOAD_FOLDER, 'vton_input.png')
        
        garm_img.save(garm_path)
        vton_img.save(vton_path)

        # Convert file objects to bytes IO objects
        # garm_img = BytesIO(garm_img.read())
        # vton_img = BytesIO(vton_img.read())

        output_images = process_dc(garm_img=garm_img,
                                   vton_img=vton_img,
                                   category=category)

        if not output_images:
            return Response("No output image generated", status=500)

        output_image = output_images[0]  # Get the first image

        # Convert PIL Image to bytes
        img_byte_arr = BytesIO()
        output_image.save(img_byte_arr, format='PNG')
        img_byte_arr = img_byte_arr.getvalue()

        # Send the final "complete" event via SSE
        sse.publish({"message": "Processing complete"}, type='complete')

        return Response(img_byte_arr, mimetype='image/png')

    except Exception as e:
        print(f"Error: {str(e)}")  # Log the error
        return Response(str(e), status=500)


  



if __name__ == '__main__':
    app.run(debug=False, host='0.0.0.0', port=5009)




# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &