File size: 17,210 Bytes
3bc69b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import gradio as gr
import os
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
import numpy as np
from utils_ootd import get_mask_location

PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))

from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_hd import OOTDiffusionHD
from ootd.inference_ootd_dc import OOTDiffusionDC
from preprocess.openpose.annotator.openpose.util import draw_bodypose

# Set default dtype to float64
# torch.set_default_dtype(torch.float16)


openpose_model_hd = OpenPose(0)
parsing_model_hd = Parsing(0)
ootd_model_hd = OOTDiffusionHD(0)

openpose_model_dc = OpenPose(0)
parsing_model_dc = Parsing(0)
ootd_model_dc = OOTDiffusionDC(0)


category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']


example_path = os.path.join(os.path.dirname(__file__), 'examples')
model_hd = os.path.join(example_path, 'model/model_1.png')
garment_hd = os.path.join(example_path, 'garment/03244_00.jpg')
model_dc = os.path.join(example_path, 'model/model_8.png')
garment_dc = os.path.join(example_path, 'garment/048554_1.jpg')

openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')

def convert_to_image(image_array):
    if isinstance(image_array, np.ndarray):
        # Normalize the data to the range [0, 255]
        image_array = 255 * (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array))
        # Convert to uint8
        image_array = image_array.astype(np.uint8)
        return Image.fromarray(image_array)
    else:
        # Convert to NumPy array first if necessary
        image_array = np.array(image_array)
        # Normalize and convert to uint8
        image_array = 255 * (image_array - np.min(image_array)) / (np.max(image_array) - np.min(image_array))
        image_array = image_array.astype(np.uint8)
        return Image.fromarray(image_array)

# import spaces

# @spaces.GPU
def process_hd(vton_img, garm_img, n_samples, n_steps, image_scale, seed):
    model_type = 'hd'
    category = 0 # 0:upperbody; 1:lowerbody; 2:dress

    with torch.no_grad():
        openpose_model_hd.preprocessor.body_estimation.model.to('cuda')
        ootd_model_hd.pipe.to('cuda')
        ootd_model_hd.image_encoder.to('cuda')
        ootd_model_hd.text_encoder.to('cuda')
        
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        keypoints = openpose_model_hd(vton_img.resize((384, 512)))
        model_parse, _ = parsing_model_hd(vton_img.resize((384, 512)))

        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)

        images = ootd_model_hd(
            model_type=model_type,
            category=category_dict[category],
            image_garm=garm_img,
            image_vton=masked_vton_img,
            mask=mask,
            image_ori=vton_img,
            num_samples=n_samples,
            num_steps=n_steps,
            image_scale=image_scale,
            seed=seed,
        )

    return images



# @spaces.GPU
def process_dc(vton_img, garm_img, category):
    model_type = 'dc'
    if category == 'Upper-body':
        category = 0
    elif category == 'Lower-body':
        category = 1
    else:
        category =2

    with torch.no_grad():
        # openpose_model_dc.preprocessor.body_estimation.model.to('cuda')
        # ootd_model_dc.pipe.to('cuda')
        # ootd_model_dc.image_encoder.to('cuda')
        # ootd_model_dc.text_encoder.to('cuda')
        
        garm_img = Image.open(garm_img).resize((768, 1024))
        vton_img = Image.open(vton_img).resize((768, 1024))
        keypoints ,candidate , subset = openpose_model_dc(vton_img.resize((384, 512)))

        # print(len(keypoints["pose_keypoints_2d"]))
        # print(keypoints["pose_keypoints_2d"])

        # person_image = np.asarray(vton_img)


        # print(len(person_image))
        

        # person_image = np.asarray(Image.open(vton_img).resize((768, 1024))) 

        # output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset )
        # output_image = Image.fromarray(output)
        # output_image.save('keypose.png')



        left_point = keypoints["pose_keypoints_2d"][2]
        right_point = keypoints["pose_keypoints_2d"][5]

        neck_point = keypoints["pose_keypoints_2d"][1]
        hip_point = keypoints["pose_keypoints_2d"][8]



        print(f'left shoulder - {left_point}')
        print(f'right shoulder - {right_point}')
 
        # #find disctance using Euclidian distance
        shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)

        height_pixels  = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2


        # # Assuming an average human height 
        average_height_cm = 172.72 *1.5

        # Conversion factor from pixels to cm
        conversion_factor = average_height_cm / height_pixels

        # Convert shoulder width to real-world units
        shoulder_width_cm = shoulder_width_pixels * conversion_factor

        print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
        print(f'Estimated height (in pixels): {height_pixels}')
        print(f'Conversion factor (pixels to cm): {conversion_factor}')
        print(f'Shoulder width (in cm): {shoulder_width_cm}')
        print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')

        model_parse, face_mask = parsing_model_dc(vton_img.resize((384, 512)))

        model_parse_image = convert_to_image(model_parse)
        face_mask_image = convert_to_image(face_mask)

        # Save the images
        model_parse_image.save('model_parse_image.png')
        face_mask_image.save('face_mask_image.png')


        mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
        mask = mask.resize((768, 1024), Image.NEAREST)
        mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
        
        masked_vton_img = Image.composite(mask_gray, vton_img, mask)

        images = ootd_model_dc(
            model_type=model_type,
            category=category_dict[category],
            image_garm=garm_img,
            image_vton=masked_vton_img,
            mask=mask,
            image_ori=vton_img,
            num_samples=1,
            num_steps=10,
            image_scale=  2.0,
            seed=-1,
        )

    return images


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("# ")
    # with gr.Row():
    #     gr.Markdown("## Half-body-1")
    # with gr.Row():
    #     gr.Markdown("***Support upper-body garments***")
    # with gr.Row():
        # with gr.Column():
        #     vton_img = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_hd)
        #     example = gr.Examples(
        #         inputs=vton_img,
        #         examples_per_page=14,
        #         examples=[
        #             os.path.join(example_path, 'model/model_1.png'),
        #             os.path.join(example_path, 'model/model_2.png'),
        #             os.path.join(example_path, 'model/model_3.png'),
        #             os.path.join(example_path, 'model/model_4.png'),
        #             os.path.join(example_path, 'model/model_5.png'),
        #             os.path.join(example_path, 'model/model_6.png'),
        #             os.path.join(example_path, 'model/model_7.png'),
        #             os.path.join(example_path, 'model/01008_00.jpg'),
        #             os.path.join(example_path, 'model/07966_00.jpg'),
        #             os.path.join(example_path, 'model/05997_00.jpg'),
        #             os.path.join(example_path, 'model/02849_00.jpg'),
        #             os.path.join(example_path, 'model/14627_00.jpg'),
        #             os.path.join(example_path, 'model/09597_00.jpg'),
        #             os.path.join(example_path, 'model/01861_00.jpg'),
        #         ])
    #     with gr.Column():
    #         garm_img = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_hd)
    #         example = gr.Examples(
    #             inputs=garm_img,
    #             examples_per_page=14,
    #             examples=[
    #                 os.path.join(example_path, 'garment/03244_00.jpg'),
    #                 os.path.join(example_path, 'garment/00126_00.jpg'),
    #                 os.path.join(example_path, 'garment/03032_00.jpg'),
    #                 os.path.join(example_path, 'garment/06123_00.jpg'),
    #                 os.path.join(example_path, 'garment/02305_00.jpg'),
    #                 os.path.join(example_path, 'garment/00055_00.jpg'),
    #                 os.path.join(example_path, 'garment/00470_00.jpg'),
    #                 os.path.join(example_path, 'garment/02015_00.jpg'),
    #                 os.path.join(example_path, 'garment/10297_00.jpg'),
    #                 os.path.join(example_path, 'garment/07382_00.jpg'),
    #                 os.path.join(example_path, 'garment/07764_00.jpg'),
    #                 os.path.join(example_path, 'garment/00151_00.jpg'),
    #                 os.path.join(example_path, 'garment/12562_00.jpg'),
    #                 os.path.join(example_path, 'garment/04825_00.jpg'),
    #             ])
    #     with gr.Column():
    #         result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)   
    # with gr.Column():
    #     run_button = gr.Button(value="Run")
    #     n_samples = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
    #     n_steps = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
    #     # scale = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
    #     image_scale = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
    #     seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
        
    # ips = [vton_img, garm_img, n_samples, n_steps, image_scale, seed]
    # run_button.click(fn=process_hd, inputs=ips, outputs=[result_gallery])


    with gr.Row():
        gr.Markdown("## Virtual Trial Room")
    with gr.Row():
        gr.Markdown("*** Note :- Please Select Garment Type in below drop-down as upper-body/lower-body/dresses;***")
    with gr.Row():
        with gr.Column():
            vton_img_dc = gr.Image(label="Model", sources='upload', type="filepath", height=384, value=model_dc)
            example = gr.Examples(
                label="Select for Upper/Lower Body",
                inputs=vton_img_dc,
                examples_per_page=7,
                examples=[
                    os.path.join(example_path, 'model/model_8.png'),
                    os.path.join(example_path, 'model/049447_0.jpg'),
                    os.path.join(example_path, 'model/049713_0.jpg'),
                    os.path.join(example_path, 'model/051482_0.jpg'),
                    os.path.join(example_path, 'model/051918_0.jpg'),
                    os.path.join(example_path, 'model/051962_0.jpg'),
                    os.path.join(example_path, 'model/049205_0.jpg'),
                ]
                )
            example = gr.Examples(
                label="Select for Full Body Dress",
                inputs=vton_img_dc,
                examples_per_page=7,
                examples=[
                    os.path.join(example_path, 'model/model_9.png'),
                #     os.path.join(example_path, 'model/052767_0.jpg'),
                #     os.path.join(example_path, 'model/052472_0.jpg'),
                    os.path.join(example_path, 'model/053514_0.jpg'),
                    os.path.join(example_path, 'model/male/male_side.png'),
                    os.path.join(example_path, 'model/male/male_2.png'),

                    os.path.join(example_path, 'model/male/femal_s_34.png'),
                    os.path.join(example_path, 'model/male/femal_s_34_test.png'),
                    os.path.join(example_path, 'model/male/male_small.png'),
                    os.path.join(example_path, 'model/male/female.png'),
                #     os.path.join(example_path, 'model/053228_0.jpg'),
                #     os.path.join(example_path, 'model/052964_0.jpg'),
                #     os.path.join(example_path, 'model/053700_0.jpg'),
                ]
                )
        with gr.Column():
            garm_img_dc = gr.Image(label="Garment", sources='upload', type="filepath", height=384, value=garment_dc)
            category_dc = gr.Dropdown(label="Garment category (important option!!!)", choices=["Upper-body", "Lower-body", "Dress"], value="Upper-body")
            example = gr.Examples(
                label="Examples (upper-body)",
                inputs=garm_img_dc,
                examples_per_page=7,
                examples=[
                    os.path.join(example_path,'garment/01260_00.jpg'),
                    os.path.join(example_path,'garment/01430_00.jpg'),
                    os.path.join(example_path,'garment/02783_00.jpg'),
                    os.path.join(example_path,'garment/03751_00.jpg'),
                    os.path.join(example_path,'garment/06429_00.jpg'),
                    os.path.join(example_path,'garment/06802_00.jpg'),
                    os.path.join(example_path,'garment/07429_00.jpg'),
                    os.path.join(example_path,'garment/08348_00.jpg'),
                    os.path.join(example_path,'garment/09933_00.jpg'),
                    os.path.join(example_path,'garment/11028_00.jpg'),
                    os.path.join(example_path,'garment/11351_00.jpg'),
                    os.path.join(example_path,'garment/11791_00.jpg'),
                    os.path.join(example_path, 'garment/048554_1.jpg'),
                    os.path.join(example_path, 'garment/049920_1.jpg'),
                    os.path.join(example_path, 'garment/049965_1.jpg'),
                    os.path.join(example_path, 'garment/049949_1.jpg'),
                    os.path.join(example_path, 'garment/050181_1.jpg'),
                    os.path.join(example_path, 'garment/049805_1.jpg'),
                    os.path.join(example_path, 'garment/050105_1.jpg'),
                    os.path.join(example_path, 'garment/male_tshirt1.png'),
                ])
            example = gr.Examples(
                label="Examples (lower-body)",
                inputs=garm_img_dc,
                examples_per_page=7,
                examples=[
                    os.path.join(example_path, 'garment/051827_1.jpg'),
                    os.path.join(example_path, 'garment/051946_1.jpg'),
                    os.path.join(example_path, 'garment/051473_1.jpg'),
                    os.path.join(example_path, 'garment/051515_1.jpg'),
                    os.path.join(example_path, 'garment/051517_1.jpg'),
                    os.path.join(example_path, 'garment/051988_1.jpg'),
                    os.path.join(example_path, 'garment/051412_1.jpg'),
                ])
            example = gr.Examples(
                label="Examples (dress)",
                inputs=garm_img_dc,
                examples_per_page=7,
                examples=[
                    os.path.join(example_path, 'garment/053290_1.jpg'),
                    os.path.join(example_path, 'garment/053744_1.jpg'),
                    os.path.join(example_path, 'garment/053742_1.jpg'),
                    os.path.join(example_path, 'garment/053786_1.jpg'),
                    os.path.join(example_path, 'garment/053790_1.jpg'),
                    os.path.join(example_path, 'garment/053319_1.jpg'),
                    os.path.join(example_path, 'garment/052234_1.jpg'),
                ])
        with gr.Column():
            result_gallery_dc = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True, scale=1)   
    with gr.Column():
        run_button_dc = gr.Button(value="Run")
        # n_samples_dc = gr.Slider(label="Images", minimum=1, maximum=4, value=1, step=1)
        # n_steps_dc = gr.Slider(label="Steps", minimum=20, maximum=40, value=20, step=1)
        # scale_dc = gr.Slider(label="Scale", minimum=1.0, maximum=12.0, value=5.0, step=0.1)
        # image_scale_dc = gr.Slider(label="Guidance scale", minimum=1.0, maximum=5.0, value=2.0, step=0.1)
        # seed_dc = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=-1)
        
    ips_dc = [vton_img_dc, garm_img_dc, category_dc]
    run_button_dc.click(fn=process_dc, inputs=ips_dc, outputs=[result_gallery_dc])


block.launch(server_name="0.0.0.0", server_port=7860 )