GT_VTR3_1 / app.py
Ubuntu
improved inference time
3bc69b8
raw
history blame
7.24 kB
from flask import Flask, request, jsonify,send_file, Response
from flask_cors import CORS
import logging
import gc
import os
from io import BytesIO
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
import numpy as np
from run.utils_ootd import get_mask_location
from run.cloths_db import cloths_map, modeL_db
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_dc import OOTDiffusionDC
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
#run python garbage collector and nvidia cuda clear memory
gc.collect()
torch.cuda.empty_cache()
# Setup Flask server
app = Flask(__name__)
CORS(app, origins="*") # Enable CORS for the entire app
logger = logging.getLogger()
openpose_model = OpenPose(0)
parsing_model_dc = Parsing(0)
ootd_model_dc = OOTDiffusionDC(0)
example_path = os.path.join(os.path.dirname(__file__), 'examples')
garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment')
openpose_model.preprocessor.body_estimation.model.to('cuda')
ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# Ensure this directory exists
UPLOAD_FOLDER = 'temp_images'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
def process_dc(vton_img, garm_img, category):
model_type = 'dc'
# if category == 'Upper-body':
# category = 0
# elif category == 'Lower-body':
# category = 1
# else:
# category = 2
with torch.no_grad():
# openpose_model.preprocessor.body_estimation.model.to('cuda')
# ootd_model_dc.pipe.to('cuda')
# ootd_model_dc.image_encoder.to('cuda')
# ootd_model_dc.text_encoder.to('cuda')
garm_img = Image.open(garm_img).convert('RGB').resize((768, 1024))
vton_img = Image.open(vton_img).convert('RGB').resize((768, 1024))
keypoints = openpose_model(vton_img.resize((384, 512)))
print(len(keypoints["pose_keypoints_2d"]))
print(keypoints["pose_keypoints_2d"])
left_point = keypoints["pose_keypoints_2d"][2]
right_point = keypoints["pose_keypoints_2d"][5]
neck_point = keypoints["pose_keypoints_2d"][1]
hip_point = keypoints["pose_keypoints_2d"][8]
print(f'left shoulder - {left_point}')
print(f'right shoulder - {right_point}')
# #find disctance using Euclidian distance
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2
# # Assuming an average human height
average_height_cm = 172.72 *1.5
# Conversion factor from pixels to cm
conversion_factor = average_height_cm / height_pixels
# Convert shoulder width to real-world units
shoulder_width_cm = shoulder_width_pixels * conversion_factor
print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
print(f'Estimated height (in pixels): {height_pixels}')
print(f'Conversion factor (pixels to cm): {conversion_factor}')
print(f'Shoulder width (in cm): {shoulder_width_cm}')
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
model_parse,_ = parsing_model_dc(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
# Save the resized masks
# mask.save("mask_resized.png")
# mask_gray.save("mask_gray_resized.png")
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
# masked_vton_img.save("masked_vton_img.png")
print(f'category is {category}')
images = ootd_model_dc(
model_type=model_type,
category=category_dict[category],
image_garm=garm_img,
image_vton=masked_vton_img,
mask=mask,
image_ori=vton_img,
num_samples=1,
num_steps=10,
image_scale= 1.0,
seed=-1,
)
return images
@app.route('/')
def root():
try:
response_data = {"message": "This is VTR API v1.0"}
return jsonify(response_data)
except Exception as e:
logger.error(f"Root endpoint error: {str(e)}")
response_data = {"message": "Internal server Error"}
return jsonify(response_data), 500
#write Flask api name "generate" with POST method that will input 2 images and return 1 image
@app.route('/generate', methods=['POST'])
def generate():
"""
A Flask route that handles a POST request to the '/generate' endpoint.
It expects two files, 'garm_img' and 'vton_img', to be included in the request.
The function calls the 'process_dc' function with the provided files and the
category 'Upper-body'. It then sends the processed image as a file with the
mimetype 'image/png' and returns it to the client. If any exception occurs,
the function logs the error and returns a JSON response with a status code of
500.
Parameters:
None
Returns:
A Flask response object with the processed image as a file.
Raises:
None
"""
# if category == 'Upper-body':
# category = 0
# elif category == 'Lower-body':
# category = 1
# else:
# category = 2
try:
garm_img = request.files['garm_img']
vton_img = request.files['vton_img']
category = 0 # Default to Upper-body if not specified
# Save the uploaded files
garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
vton_path = os.path.join(UPLOAD_FOLDER, 'vton_input.png')
garm_img.save(garm_path)
vton_img.save(vton_path)
# Convert file objects to bytes IO objects
# garm_img = BytesIO(garm_img.read())
# vton_img = BytesIO(vton_img.read())
output_images = process_dc(garm_img=garm_img,
vton_img=vton_img,
category=category)
if not output_images:
return Response("No output image generated", status=500)
output_image = output_images[0] # Get the first image
# Convert PIL Image to bytes
img_byte_arr = BytesIO()
output_image.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
return Response(img_byte_arr, mimetype='image/png')
except Exception as e:
print(f"Error: {str(e)}") # Log the error
return Response(str(e), status=500)
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=5009)
# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &