GT_VTR3_1 / app2.py
Ubuntu
improved inference time
3bc69b8
from flask import Flask, request, jsonify,send_file, Response
from flask_cors import CORS
import logging
import gc
import os
from threading import Thread
from flask_sse import sse
import uuid
import redis
import multiprocessing
from werkzeug.exceptions import NotFound, InternalServerError
import threading
from collections import OrderedDict
from flask import current_app
import time
from celery import Celery
from io import BytesIO
from pathlib import Path
import sys
import torch
from PIL import Image, ImageOps
import numpy as np
from run.utils_ootd import get_mask_location
from run.cloths_db import cloths_map, modeL_db
from preprocess.openpose.run_openpose import OpenPose
from preprocess.humanparsing.run_parsing import Parsing
from ootd.inference_ootd_dc import OOTDiffusionDC
PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute()
sys.path.insert(0, str(PROJECT_ROOT))
from queue import Queue
from celery_worker import process_image
#run python garbage collector and nvidia cuda clear memory
gc.collect()
torch.cuda.empty_cache()
# Set the start method to 'spawn'
# multiprocessing.set_start_method('spawn', force=True)
# Setup Flask server
app = Flask(__name__)
app.config.update(
CELERY_BROKER_URL='redis://localhost:6379',
CELERY_RESULT_BACKEND='redis://localhost:6379'
)
# Initialize Celery
celery = Celery(app.name, broker=app.config['CELERY_BROKER_URL'])
celery.conf.update(app.config)
logger = logging.getLogger()
openpose_model = OpenPose(0)
parsing_model_dc = Parsing(0)
ootd_model_dc = OOTDiffusionDC(0)
example_path = os.path.join(os.path.dirname(__file__), 'examples')
garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment')
openpose_model.preprocessor.body_estimation.model.to('cuda')
ootd_model_dc.pipe.to('cuda')
ootd_model_dc.image_encoder.to('cuda')
ootd_model_dc.text_encoder.to('cuda')
category_dict = ['upperbody', 'lowerbody', 'dress']
category_dict_utils = ['upper_body', 'lower_body', 'dresses']
# Ensure this directory exists
UPLOAD_FOLDER = 'temp_images'
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
OUTPUT_FOLDER = 'path/to/output/folder'
image_results = {}
image_results_lock = threading.Lock()
# Use an OrderedDict to limit the number of stored results
image_results = OrderedDict()
MAX_RESULTS = 100 # Adjust this value based on your needs
def process_dc(vton_img, garm_img, category,progress_callback):
model_type = 'dc'
if category == 'Upper-body':
category = 0
elif category == 'Lower-body':
category = 1
else:
category = 2
with torch.no_grad():
# openpose_model.preprocessor.body_estimation.model.to('cuda')
# ootd_model_dc.pipe.to('cuda')
# ootd_model_dc.image_encoder.to('cuda')
# ootd_model_dc.text_encoder.to('cuda')
garm_img = Image.open(garm_img).resize((768, 1024))
vton_img = Image.open(vton_img).resize((768, 1024))
keypoints = openpose_model(vton_img.resize((384, 512)))
print(len(keypoints["pose_keypoints_2d"]))
print(keypoints["pose_keypoints_2d"])
left_point = keypoints["pose_keypoints_2d"][2]
right_point = keypoints["pose_keypoints_2d"][5]
neck_point = keypoints["pose_keypoints_2d"][1]
hip_point = keypoints["pose_keypoints_2d"][8]
print(f'left shoulder - {left_point}')
print(f'right shoulder - {right_point}')
# #find disctance using Euclidian distance
shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2)
height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2
# # Assuming an average human height
average_height_cm = 172.72 *1.5
# Conversion factor from pixels to cm
conversion_factor = average_height_cm / height_pixels
# Convert shoulder width to real-world units
shoulder_width_cm = shoulder_width_pixels * conversion_factor
print(f'Shoulder width (in pixels): {shoulder_width_pixels}')
print(f'Estimated height (in pixels): {height_pixels}')
print(f'Conversion factor (pixels to cm): {conversion_factor}')
print(f'Shoulder width (in cm): {shoulder_width_cm}')
print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}')
model_parse,_ = parsing_model_dc(vton_img.resize((384, 512)))
mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints)
mask = mask.resize((768, 1024), Image.NEAREST)
mask_gray = mask_gray.resize((768, 1024), Image.NEAREST)
# Save the resized masks
# mask.save("mask_resized.png")
# mask_gray.save("mask_gray_resized.png")
masked_vton_img = Image.composite(mask_gray, vton_img, mask)
# masked_vton_img.save("masked_vton_img.png")
print(f'category is {category}')
# images = ootd_model_dc(
# model_type=model_type,
# category=category_dict[category],
# image_garm=garm_img,
# image_vton=masked_vton_img,
# mask=mask,
# image_ori=vton_img,
# num_samples=3,
# num_steps=20,
# image_scale= 2.0,
# seed=-1,
# )
images = ootd_model_dc(
model_type=model_type,
category=category_dict[category],
image_garm=garm_img,
image_vton=masked_vton_img,
mask=mask,
image_ori=vton_img,
num_samples=2,
num_steps=10,
image_scale=2.0,
seed=42,
progress_callback=progress_callback,
progress_interval=1, # Update progress every step
)
return images
# def create_progress_callback(session_id):
# def progress_callback(step, total_steps):
# progress = int((step + 1) / total_steps * 100)
# print(f"Publishing progress {progress} for session {session_id}")
# sse.publish({"progress": progress}, type='progress', channel=session_id)
# return progress_callback
# @celery.task(bind=True)
# def process_image(self, session_id, garm_path, vton_path, category):
# try:
# print(f"Starting process_image task for session {session_id}")
# progress_callback = create_progress_callback(session_id)
# output_images = process_dc(garm_img=garm_path,
# vton_img=vton_path,
# category=category,
# progress_callback=progress_callback)
# if not output_images:
# sse.publish({"error": "No output image generated"}, type='error', channel=session_id)
# return None
# output_image = output_images[0]
# # Generate a UUID for the output image
# image_uuid = str(uuid.uuid4())
# # Create the output filename with the UUID
# output_filename = f"{image_uuid}.png"
# output_path = os.path.join(OUTPUT_FOLDER, output_filename)
# # Save the output image
# output_image.save(output_path, format='PNG')
# # Add the UUID and path to the image_results map
# with image_results_lock:
# image_results[image_uuid] = output_path
# sse.publish({"message": "Processing complete", "uuid": image_uuid}, type='complete', channel=session_id)
# return image_uuid
# except Exception as e:
# sse.publish({"error": str(e)}, type='error', channel=session_id)
# return print(f"panic in process_image: {str(e)}")
@app.route('/')
def root():
try:
response_data = {"message": "This is VTR API v1.0"}
return jsonify(response_data)
except Exception as e:
logger.error(f"Root endpoint error: {str(e)}")
response_data = {"message": "Internal server Error"}
return jsonify(response_data), 500
# @app.route('/stream')
# def stream():
# session_id = request.args.get('channel')
# if not session_id:
# return "No channel specified", 400
# return Response(sse.stream(), content_type='text/event-stream')
@app.route('/test_sse/<session_id>')
def test_sse(session_id):
sse.publish({"message": "Test SSE"}, type='test', channel=session_id)
return "SSE test message sent"
#write Flask api name "generate" with POST method that will input 2 images and return 1 image
@app.route('/generate', methods=['POST'])
def generate():
"""
A Flask route that handles a POST request to the '/generate' endpoint.
It expects two files, 'garm_img' and 'vton_img', to be included in the request.
The function calls the 'process_dc' function with the provided files and the
category 'Upper-body'. It then sends the processed image as a file with the
mimetype 'image/png' and returns it to the client. If any exception occurs,
the function logs the error and returns a JSON response with a status code of
500.
Parameters:
None
Returns:
A Flask response object with the processed image as a file.
Raises:
None
"""
# if category == 'Upper-body':
# category = 0
# elif category == 'Lower-body':
# category = 1
# else:
# category = 2
try:
cloths_type = ["Upper-body", "Lower-body", "Dress"]
garm_img = request.files['garm_img']
vton_img = request.files['vton_img']
cat = request.form['category']
print(f'category is {cat}')
category =cloths_type[int(cat)] # Default to Upper-body if not specified
# Save the uploaded files
garm_path = os.path.join(UPLOAD_FOLDER, 'garm_input.png')
vton_path = os.path.join(UPLOAD_FOLDER, 'vton_input.png')
garm_img.save(garm_path)
vton_img.save(vton_path)
# Convert file objects to bytes IO objects
# garm_img = BytesIO(garm_img.read())
# vton_img = BytesIO(vton_img.read())
# Start processing in a background task
session_id = str(uuid.uuid4())
process_image.apply_async(args=[session_id, garm_path, vton_path, category])
# Immediately return the session_id to the client
return jsonify({"session_id": session_id, "message": "Processing started"}), 202
# while not task.ready():
# time.sleep(1) # Polling the task status every second
# if task.successful():
# img_byte_arr = task.result
# if img_byte_arr:
# return Response(img_byte_arr, mimetype='image/png')
# else:
# return Response("No output image generated", status=500)
# else:
# return Response("Processing failed", status=500)
except Exception as e:
print(f"Error: {str(e)}") # Log the error
return Response(str(e), status=500)
@app.route('/get_image/<uuid>')
def get_image(uuid):
try:
with image_results_lock:
if uuid not in image_results:
raise NotFound("Invalid UUID or result not available")
image_path = image_results[uuid]
if not os.path.exists(image_path):
raise NotFound("Image file not found")
# Determine the MIME type based on the file extension
file_extension = os.path.splitext(image_path)[1].lower()
mime_type = 'image/jpeg' if file_extension == '.jpg' or file_extension == '.jpeg' else 'image/png'
return send_file(image_path, mimetype=mime_type, as_attachment=False)
except NotFound as e:
logger.warning(f"Get image request failed: {str(e)}")
return jsonify({"error": str(e)}), 404
except Exception as e:
logger.error(f"Unexpected error in get_image: {str(e)}")
return jsonify({"error": "An unexpected error occurred"}), 500
if __name__ == '__main__':
app.run(debug=False, host='0.0.0.0', port=5009)
# nohup gunicorn -b 0.0.0.0:5003 sentiment_api:app &