import os from pathlib import Path import sys import torch from PIL import Image, ImageOps import numpy as np from utils_ootd import get_mask_location from cloths_db import cloths_map, modeL_db PROJECT_ROOT = Path(__file__).absolute().parents[1].absolute() sys.path.insert(0, str(PROJECT_ROOT)) from preprocess.openpose.run_openpose import OpenPose from preprocess.humanparsing.run_parsing import Parsing from ootd.inference_ootd_hd import OOTDiffusionHD from ootd.inference_ootd_dc import OOTDiffusionDC from preprocess.openpose.annotator.openpose.util import draw_bodypose openpose_model = OpenPose(0) parsing_model_dc = Parsing(0) ootd_model_dc = OOTDiffusionDC(0) category_dict = ['upperbody', 'lowerbody', 'dress'] category_dict_utils = ['upper_body', 'lower_body', 'dresses'] example_path = os.path.join(os.path.dirname(__file__), 'examples') garment_path = os.path.join(os.path.dirname(__file__), 'examples','garment') openpose_model.preprocessor.body_estimation.model.to('cuda') ootd_model_dc.pipe.to('cuda') ootd_model_dc.image_encoder.to('cuda') ootd_model_dc.text_encoder.to('cuda') def process_dc(vton_img, garm_img, category): model_type = 'dc' if category == 'Upper-body': category = 0 elif category == 'Lower-body': category = 1 else: category =2 with torch.no_grad(): # openpose_model_dc.preprocessor.body_estimation.model.to('cuda') # ootd_model_dc.pipe.to('cuda') # ootd_model_dc.image_encoder.to('cuda') # ootd_model_dc.text_encoder.to('cuda') garm_img = Image.open(garm_img).resize((768, 1024)) vton_img = Image.open(vton_img).resize((768, 1024)) keypoints = openpose_model(vton_img.resize((384, 512))) print(len(keypoints["pose_keypoints_2d"])) print(keypoints["pose_keypoints_2d"]) # person_image = np.asarray(vton_img) # print(len(person_image)) # person_image = np.asarray(Image.open(vton_img).resize((768, 1024))) # output = draw_bodypose(canvas=person_image,candidate=candidate, subset=subset ) # output_image = Image.fromarray(output) # output_image.save('keypose.png') left_point = keypoints["pose_keypoints_2d"][2] right_point = keypoints["pose_keypoints_2d"][5] neck_point = keypoints["pose_keypoints_2d"][1] hip_point = keypoints["pose_keypoints_2d"][8] print(f'left shoulder - {left_point}') print(f'right shoulder - {right_point}') # #find disctance using Euclidian distance shoulder_width_pixels = round(np.sqrt( np.power((right_point[0]-left_point[0]),2) + np.power((right_point[1]-left_point[1]),2)),2) height_pixels = round(np.sqrt( np.power((neck_point[0]-hip_point[0]),2) + np.power((neck_point[1]-hip_point[1]),2)),2) *2 # # Assuming an average human height average_height_cm = 172.72 *1.5 # Conversion factor from pixels to cm conversion_factor = average_height_cm / height_pixels # Convert shoulder width to real-world units shoulder_width_cm = shoulder_width_pixels * conversion_factor print(f'Shoulder width (in pixels): {shoulder_width_pixels}') print(f'Estimated height (in pixels): {height_pixels}') print(f'Conversion factor (pixels to cm): {conversion_factor}') print(f'Shoulder width (in cm): {shoulder_width_cm}') print(f'Shoulder width (in INCH): {round(shoulder_width_cm/2.54,1)}') model_parse, face_mask = parsing_model_dc(vton_img.resize((384, 512))) # model_parse_image = convert_to_image(model_parse) # face_mask_image = convert_to_image(face_mask) # Save the images # model_parse_image.save('model_parse_image.png') # face_mask_image.save('face_mask_image.png') mask, mask_gray = get_mask_location(model_type, category_dict_utils[category], model_parse, keypoints) # up_mask, up_mask_gray = get_mask_location(model_type, category_dict_utils[0], model_parse, keypoints) # lo_mask, lo_mask_gray = get_mask_location(model_type, category_dict_utils[1], model_parse, keypoints) # mask = Image.composite(up_mask,lo_mask,up_mask) # mask_gray = Image.composite(up_mask_gray, lo_mask_gray,up_mask) mask = mask.resize((768, 1024), Image.NEAREST) mask_gray = mask_gray.resize((768, 1024), Image.NEAREST) # Save the resized masks mask.save("mask_resized.png") mask_gray.save("mask_gray_resized.png") masked_vton_img = Image.composite(mask_gray, vton_img, mask) masked_vton_img.save("masked_vton_img.png") print(f'category is {category}') # images = ootd_model_dc( # model_type=model_type, # category=category_dict[category], # image_garm=garm_img, # image_vton=masked_vton_img, # mask=mask, # image_ori=vton_img, # num_samples=1, # num_steps=10, # image_scale= 2.0, # seed=-1, # ) # return None return None if __name__ == '__main__': model_dc = os.path.join(example_path, 'model/model_8.png') garment_dc = os.path.join(example_path, 'garment/048554_1.jpg') print(process_dc(model_dc,garment_dc,0))