Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,223 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import gc
import unittest
import torch
from diffusers.models import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import get_logger
from diffusers.utils.import_utils import compare_versions
from diffusers.utils.testing_utils import (
backend_empty_cache,
backend_max_memory_allocated,
backend_reset_peak_memory_stats,
require_torch_accelerator,
torch_device,
)
class DummyBlock(torch.nn.Module):
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
super().__init__()
self.proj_in = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.proj_out = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj_in(x)
x = self.activation(x)
x = self.proj_out(x)
return x
class DummyModel(ModelMixin):
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
)
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_1(x)
x = self.activation(x)
for block in self.blocks:
x = block(x)
x = self.linear_2(x)
return x
# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
# offload_type="block_level", num_blocks_per_group=2, use_stream=True
# Post the linked PR, the implementation will work as expected.
class DummyModelWithMultipleBlocks(ModelMixin):
def __init__(
self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.single_blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
)
self.double_blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
)
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_1(x)
x = self.activation(x)
for block in self.double_blocks:
x = block(x)
for block in self.single_blocks:
x = block(x)
x = self.linear_2(x)
return x
class DummyPipeline(DiffusionPipeline):
model_cpu_offload_seq = "model"
def __init__(self, model: torch.nn.Module) -> None:
super().__init__()
self.register_modules(model=model)
def __call__(self, x: torch.Tensor) -> torch.Tensor:
for _ in range(2):
x = x + 0.1 * self.model(x)
return x
@require_torch_accelerator
class GroupOffloadTests(unittest.TestCase):
in_features = 64
hidden_features = 256
out_features = 64
num_layers = 4
def setUp(self):
with torch.no_grad():
self.model = self.get_model()
self.input = torch.randn((4, self.in_features)).to(torch_device)
def tearDown(self):
super().tearDown()
del self.model
del self.input
gc.collect()
backend_empty_cache(torch_device)
backend_reset_peak_memory_stats(torch_device)
def get_model(self):
torch.manual_seed(0)
return DummyModel(
in_features=self.in_features,
hidden_features=self.hidden_features,
out_features=self.out_features,
num_layers=self.num_layers,
)
def test_offloading_forward_pass(self):
@torch.no_grad()
def run_forward(model):
gc.collect()
backend_empty_cache(torch_device)
backend_reset_peak_memory_stats(torch_device)
self.assertTrue(
all(
module._diffusers_hook.get_hook("group_offloading") is not None
for module in model.modules()
if hasattr(module, "_diffusers_hook")
)
)
model.eval()
output = model(self.input)[0].cpu()
max_memory_allocated = backend_max_memory_allocated(torch_device)
return output, max_memory_allocated
self.model.to(torch_device)
output_without_group_offloading, mem_baseline = run_forward(self.model)
self.model.to("cpu")
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
output_with_group_offloading1, mem1 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
output_with_group_offloading2, mem2 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
output_with_group_offloading3, mem3 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level")
output_with_group_offloading4, mem4 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
output_with_group_offloading5, mem5 = run_forward(model)
# Precision assertions - offloading should not impact the output
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
# Memory assertions - offloading should reduce memory usage
self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)
def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.models.modeling_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
self.model.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
pipe = DummyPipeline(self.model)
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
pipe.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_error_raised_if_streams_used_and_no_accelerator_device(self):
torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
original_is_available = torch_accelerator_module.is_available
torch_accelerator_module.is_available = lambda: False
with self.assertRaises(ValueError):
self.model.enable_group_offload(
onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
)
torch_accelerator_module.is_available = original_is_available
def test_error_raised_if_supports_group_offloading_false(self):
self.model._supports_group_offloading = False
with self.assertRaisesRegex(ValueError, "does not support group offloading"):
self.model.enable_group_offload(onload_device=torch.device(torch_device))
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_model_cpu_offload()
def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_sequential_cpu_offload()
def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_model_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_sequential_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
if torch.device(torch_device).type not in ["cuda", "xpu"]:
return
model = DummyModelWithMultipleBlocks(
in_features=self.in_features,
hidden_features=self.hidden_features,
out_features=self.out_features,
num_layers=self.num_layers,
num_single_layers=self.num_layers + 1,
)
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
context = contextlib.nullcontext()
if compare_versions("diffusers", "<=", "0.33.0"):
# Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")
with context:
model(self.input)
|