File size: 5,276 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import torch

from diffusers import AutoencoderKLWan
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, torch_device

from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin


enable_full_determinism()


class AutoencoderKLWanTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderKLWan
    main_input_name = "sample"
    base_precision = 1e-2

    def get_autoencoder_kl_wan_config(self):
        return {
            "base_dim": 3,
            "z_dim": 16,
            "dim_mult": [1, 1, 1, 1],
            "num_res_blocks": 1,
            "temperal_downsample": [False, True, True],
        }

    @property
    def dummy_input(self):
        batch_size = 2
        num_frames = 9
        num_channels = 3
        sizes = (16, 16)
        image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
        return {"sample": image}

    @property
    def dummy_input_tiling(self):
        batch_size = 2
        num_frames = 9
        num_channels = 3
        sizes = (128, 128)
        image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device)
        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 9, 16, 16)

    @property
    def output_shape(self):
        return (3, 9, 16, 16)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = self.get_autoencoder_kl_wan_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def prepare_init_args_and_inputs_for_tiling(self):
        init_dict = self.get_autoencoder_kl_wan_config()
        inputs_dict = self.dummy_input_tiling
        return init_dict, inputs_dict

    def test_enable_disable_tiling(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_tiling()

        torch.manual_seed(0)
        model = self.model_class(**init_dict).to(torch_device)

        inputs_dict.update({"return_dict": False})

        torch.manual_seed(0)
        output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        torch.manual_seed(0)
        model.enable_tiling(96, 96, 64, 64)
        output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertLess(
            (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
            0.5,
            "VAE tiling should not affect the inference results",
        )

        torch.manual_seed(0)
        model.disable_tiling()
        output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertEqual(
            output_without_tiling.detach().cpu().numpy().all(),
            output_without_tiling_2.detach().cpu().numpy().all(),
            "Without tiling outputs should match with the outputs when tiling is manually disabled.",
        )

    def test_enable_disable_slicing(self):
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()

        torch.manual_seed(0)
        model = self.model_class(**init_dict).to(torch_device)

        inputs_dict.update({"return_dict": False})

        torch.manual_seed(0)
        output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        torch.manual_seed(0)
        model.enable_slicing()
        output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertLess(
            (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(),
            0.05,
            "VAE slicing should not affect the inference results",
        )

        torch.manual_seed(0)
        model.disable_slicing()
        output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]

        self.assertEqual(
            output_without_slicing.detach().cpu().numpy().all(),
            output_without_slicing_2.detach().cpu().numpy().all(),
            "Without slicing outputs should match with the outputs when slicing is manually disabled.",
        )

    @unittest.skip("Gradient checkpointing has not been implemented yet")
    def test_gradient_checkpointing_is_applied(self):
        pass

    @unittest.skip("Test not supported")
    def test_forward_with_norm_groups(self):
        pass

    @unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
    def test_layerwise_casting_inference(self):
        pass

    @unittest.skip("RuntimeError: fill_out not implemented for 'Float8_e4m3fn'")
    def test_layerwise_casting_training(self):
        pass