multimodalart's picture
Upload 2025 files
22a452a verified
raw
history blame
1.42 kB
from dataclasses import dataclass
from typing import List, Union
import numpy as np
import PIL.Image
import torch
from diffusers.utils import BaseOutput
@dataclass
class HunyuanVideoPipelineOutput(BaseOutput):
r"""
Output class for HunyuanVideo pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`.
"""
frames: torch.Tensor
@dataclass
class HunyuanVideoFramepackPipelineOutput(BaseOutput):
r"""
Output class for HunyuanVideo pipelines.
Args:
frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]):
List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing
denoised PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape
`(batch_size, num_frames, channels, height, width)`. Or, a list of torch tensors where each tensor
corresponds to a latent that decodes to multiple frames.
"""
frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]], List[torch.Tensor]]