Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Lightricks and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional | |
import torch | |
from ...configuration_utils import ConfigMixin, register_to_config | |
from ...models.modeling_utils import ModelMixin | |
class ResBlock(torch.nn.Module): | |
def __init__(self, channels: int, mid_channels: Optional[int] = None, dims: int = 3): | |
super().__init__() | |
if mid_channels is None: | |
mid_channels = channels | |
Conv = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d | |
self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1) | |
self.norm1 = torch.nn.GroupNorm(32, mid_channels) | |
self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1) | |
self.norm2 = torch.nn.GroupNorm(32, channels) | |
self.activation = torch.nn.SiLU() | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
residual = hidden_states | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.activation(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = self.norm2(hidden_states) | |
hidden_states = self.activation(hidden_states + residual) | |
return hidden_states | |
class PixelShuffleND(torch.nn.Module): | |
def __init__(self, dims, upscale_factors=(2, 2, 2)): | |
super().__init__() | |
self.dims = dims | |
self.upscale_factors = upscale_factors | |
if dims not in [1, 2, 3]: | |
raise ValueError("dims must be 1, 2, or 3") | |
def forward(self, x): | |
if self.dims == 3: | |
# spatiotemporal: b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3) | |
return ( | |
x.unflatten(1, (-1, *self.upscale_factors[:3])) | |
.permute(0, 1, 5, 2, 6, 3, 7, 4) | |
.flatten(6, 7) | |
.flatten(4, 5) | |
.flatten(2, 3) | |
) | |
elif self.dims == 2: | |
# spatial: b (c p1 p2) h w -> b c (h p1) (w p2) | |
return ( | |
x.unflatten(1, (-1, *self.upscale_factors[:2])).permute(0, 1, 4, 2, 5, 3).flatten(4, 5).flatten(2, 3) | |
) | |
elif self.dims == 1: | |
# temporal: b (c p1) f h w -> b c (f p1) h w | |
return x.unflatten(1, (-1, *self.upscale_factors[:1])).permute(0, 1, 3, 2, 4, 5).flatten(2, 3) | |
class LTXLatentUpsamplerModel(ModelMixin, ConfigMixin): | |
""" | |
Model to spatially upsample VAE latents. | |
Args: | |
in_channels (`int`, defaults to `128`): | |
Number of channels in the input latent | |
mid_channels (`int`, defaults to `512`): | |
Number of channels in the middle layers | |
num_blocks_per_stage (`int`, defaults to `4`): | |
Number of ResBlocks to use in each stage (pre/post upsampling) | |
dims (`int`, defaults to `3`): | |
Number of dimensions for convolutions (2 or 3) | |
spatial_upsample (`bool`, defaults to `True`): | |
Whether to spatially upsample the latent | |
temporal_upsample (`bool`, defaults to `False`): | |
Whether to temporally upsample the latent | |
""" | |
def __init__( | |
self, | |
in_channels: int = 128, | |
mid_channels: int = 512, | |
num_blocks_per_stage: int = 4, | |
dims: int = 3, | |
spatial_upsample: bool = True, | |
temporal_upsample: bool = False, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.mid_channels = mid_channels | |
self.num_blocks_per_stage = num_blocks_per_stage | |
self.dims = dims | |
self.spatial_upsample = spatial_upsample | |
self.temporal_upsample = temporal_upsample | |
ConvNd = torch.nn.Conv2d if dims == 2 else torch.nn.Conv3d | |
self.initial_conv = ConvNd(in_channels, mid_channels, kernel_size=3, padding=1) | |
self.initial_norm = torch.nn.GroupNorm(32, mid_channels) | |
self.initial_activation = torch.nn.SiLU() | |
self.res_blocks = torch.nn.ModuleList([ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]) | |
if spatial_upsample and temporal_upsample: | |
self.upsampler = torch.nn.Sequential( | |
torch.nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1), | |
PixelShuffleND(3), | |
) | |
elif spatial_upsample: | |
self.upsampler = torch.nn.Sequential( | |
torch.nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1), | |
PixelShuffleND(2), | |
) | |
elif temporal_upsample: | |
self.upsampler = torch.nn.Sequential( | |
torch.nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1), | |
PixelShuffleND(1), | |
) | |
else: | |
raise ValueError("Either spatial_upsample or temporal_upsample must be True") | |
self.post_upsample_res_blocks = torch.nn.ModuleList( | |
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)] | |
) | |
self.final_conv = ConvNd(mid_channels, in_channels, kernel_size=3, padding=1) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
batch_size, num_channels, num_frames, height, width = hidden_states.shape | |
if self.dims == 2: | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
hidden_states = self.initial_conv(hidden_states) | |
hidden_states = self.initial_norm(hidden_states) | |
hidden_states = self.initial_activation(hidden_states) | |
for block in self.res_blocks: | |
hidden_states = block(hidden_states) | |
hidden_states = self.upsampler(hidden_states) | |
for block in self.post_upsample_res_blocks: | |
hidden_states = block(hidden_states) | |
hidden_states = self.final_conv(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
else: | |
hidden_states = self.initial_conv(hidden_states) | |
hidden_states = self.initial_norm(hidden_states) | |
hidden_states = self.initial_activation(hidden_states) | |
for block in self.res_blocks: | |
hidden_states = block(hidden_states) | |
if self.temporal_upsample: | |
hidden_states = self.upsampler(hidden_states) | |
hidden_states = hidden_states[:, :, 1:, :, :] | |
else: | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
hidden_states = self.upsampler(hidden_states) | |
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) | |
for block in self.post_upsample_res_blocks: | |
hidden_states = block(hidden_states) | |
hidden_states = self.final_conv(hidden_states) | |
return hidden_states | |