Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2025 Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab Team | |
# and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import inspect | |
from collections import OrderedDict | |
from dataclasses import dataclass | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import cv2 | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | |
from diffusers import UNet2DConditionModel as OriginalUNet2DConditionModel | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
from diffusers.loaders import ( | |
FromSingleFileMixin, | |
IPAdapterMixin, | |
PeftAdapterMixin, | |
StableDiffusionXLLoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
UNet2DConditionLoadersMixin, | |
) | |
from diffusers.models import AutoencoderKL | |
from diffusers.models.attention_processor import ( | |
AttnProcessor2_0, | |
FusedAttnProcessor2_0, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
XFormersAttnProcessor, | |
) | |
from diffusers.models.lora import adjust_lora_scale_text_encoder | |
from diffusers.models.unets.unet_2d_blocks import UNetMidBlock2D, get_down_block | |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
from diffusers.schedulers import DDPMScheduler, KarrasDiffusionSchedulers | |
from diffusers.utils import ( | |
USE_PEFT_BACKEND, | |
deprecate, | |
is_invisible_watermark_available, | |
is_torch_version, | |
is_torch_xla_available, | |
logging, | |
replace_example_docstring, | |
scale_lora_layers, | |
unscale_lora_layers, | |
) | |
from diffusers.utils.outputs import BaseOutput | |
from diffusers.utils.torch_utils import randn_tensor | |
if is_invisible_watermark_available(): | |
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import random | |
>>> import numpy as np | |
>>> import torch | |
>>> from diffusers import DiffusionPipeline, AutoencoderKL, UniPCMultistepScheduler | |
>>> from huggingface_hub import hf_hub_download | |
>>> from diffusers.utils import load_image | |
>>> from PIL import Image | |
>>> | |
>>> device = "cuda" | |
>>> dtype = torch.float16 | |
>>> MAX_SEED = np.iinfo(np.int32).max | |
>>> | |
>>> # Download weights for additional unet layers | |
>>> model_file = hf_hub_download( | |
... "jychen9811/FaithDiff", | |
... filename="FaithDiff.bin", local_dir="./proc_data/faithdiff", local_dir_use_symlinks=False | |
... ) | |
>>> | |
>>> # Initialize the models and pipeline | |
>>> vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype) | |
>>> | |
>>> model_id = "SG161222/RealVisXL_V4.0" | |
>>> pipe = DiffusionPipeline.from_pretrained( | |
... model_id, | |
... torch_dtype=dtype, | |
... vae=vae, | |
... unet=None, #<- Do not load with original model. | |
... custom_pipeline="mixture_tiling_sdxl", | |
... use_safetensors=True, | |
... variant="fp16", | |
... ).to(device) | |
>>> | |
>>> # Here we need use pipeline internal unet model | |
>>> pipe.unet = pipe.unet_model.from_pretrained(model_id, subfolder="unet", variant="fp16", use_safetensors=True) | |
>>> | |
>>> # Load additional layers to the model | |
>>> pipe.unet.load_additional_layers(weight_path="proc_data/faithdiff/FaithDiff.bin", dtype=dtype) | |
>>> | |
>>> # Enable vae tiling | |
>>> pipe.set_encoder_tile_settings() | |
>>> pipe.enable_vae_tiling() | |
>>> | |
>>> # Optimization | |
>>> pipe.enable_model_cpu_offload() | |
>>> | |
>>> # Set selected scheduler | |
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
>>> | |
>>> #input params | |
>>> prompt = "The image features a woman in her 55s with blonde hair and a white shirt, smiling at the camera. She appears to be in a good mood and is wearing a white scarf around her neck. " | |
>>> upscale = 2 # scale here | |
>>> start_point = "lr" # or "noise" | |
>>> latent_tiled_overlap = 0.5 | |
>>> latent_tiled_size = 1024 | |
>>> | |
>>> # Load image | |
>>> lq_image = load_image("https://huggingface.co/datasets/DEVAIEXP/assets/resolve/main/woman.png") | |
>>> original_height = lq_image.height | |
>>> original_width = lq_image.width | |
>>> print(f"Current resolution: H:{original_height} x W:{original_width}") | |
>>> | |
>>> width = original_width * int(upscale) | |
>>> height = original_height * int(upscale) | |
>>> print(f"Final resolution: H:{height} x W:{width}") | |
>>> | |
>>> # Restoration | |
>>> image = lq_image.resize((width, height), Image.LANCZOS) | |
>>> input_image, width_init, height_init, width_now, height_now = pipe.check_image_size(image) | |
>>> | |
>>> generator = torch.Generator(device=device).manual_seed(random.randint(0, MAX_SEED)) | |
>>> gen_image = pipe(lr_img=input_image, | |
... prompt = prompt, | |
... num_inference_steps=20, | |
... guidance_scale=5, | |
... generator=generator, | |
... start_point=start_point, | |
... height = height_now, | |
... width=width_now, | |
... overlap=latent_tiled_overlap, | |
... target_size=(latent_tiled_size, latent_tiled_size) | |
... ).images[0] | |
>>> | |
>>> cropped_image = gen_image.crop((0, 0, width_init, height_init)) | |
>>> cropped_image.save("data/result.png") | |
``` | |
""" | |
def zero_module(module): | |
"""Zero out the parameters of a module and return it.""" | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
class Encoder(nn.Module): | |
"""Encoder layer of a variational autoencoder that encodes input into a latent representation.""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 4, | |
down_block_types: Tuple[str, ...] = ( | |
"DownEncoderBlock2D", | |
"DownEncoderBlock2D", | |
"DownEncoderBlock2D", | |
"DownEncoderBlock2D", | |
), | |
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), | |
layers_per_block: int = 2, | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
double_z: bool = True, | |
mid_block_add_attention: bool = True, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = nn.Conv2d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
self.use_rgb = False | |
self.down_block_type = down_block_types | |
self.block_out_channels = block_out_channels | |
self.tile_sample_min_size = 1024 | |
self.tile_latent_min_size = int(self.tile_sample_min_size / 8) | |
self.tile_overlap_factor = 0.25 | |
self.use_tiling = False | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_downsample=not is_final_block, | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
) | |
self.down_blocks.append(down_block) | |
self.mid_block = UNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
add_attention=mid_block_add_attention, | |
) | |
self.gradient_checkpointing = False | |
def to_rgb_init(self): | |
"""Initialize layers to convert features to RGB.""" | |
self.to_rgbs = nn.ModuleList([]) | |
self.use_rgb = True | |
for i, down_block_type in enumerate(self.down_block_type): | |
output_channel = self.block_out_channels[i] | |
self.to_rgbs.append(nn.Conv2d(output_channel, 3, kernel_size=3, padding=1)) | |
def enable_tiling(self): | |
"""Enable tiling for large inputs.""" | |
self.use_tiling = True | |
def encode(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
"""Encode the input tensor into a latent representation.""" | |
sample = self.conv_in(sample) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(down_block), sample, use_reentrant=False | |
) | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, use_reentrant=False | |
) | |
else: | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) | |
return sample | |
else: | |
for down_block in self.down_blocks: | |
sample = down_block(sample) | |
sample = self.mid_block(sample) | |
return sample | |
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
"""Blend two tensors vertically with a smooth transition.""" | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) | |
return b | |
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: | |
"""Blend two tensors horizontally with a smooth transition.""" | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) | |
return b | |
def tiled_encode(self, x: torch.FloatTensor) -> torch.FloatTensor: | |
"""Encode the input tensor using tiling for large inputs.""" | |
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) | |
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) | |
row_limit = self.tile_latent_min_size - blend_extent | |
rows = [] | |
for i in range(0, x.shape[2], overlap_size): | |
row = [] | |
for j in range(0, x.shape[3], overlap_size): | |
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] | |
tile = self.encode(tile) | |
row.append(tile) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append(tile[:, :, :row_limit, :row_limit]) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
moments = torch.cat(result_rows, dim=2) | |
return moments | |
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: | |
"""Forward pass of the encoder, using tiling if enabled for large inputs.""" | |
if self.use_tiling and ( | |
sample.shape[-1] > self.tile_latent_min_size or sample.shape[-2] > self.tile_latent_min_size | |
): | |
return self.tiled_encode(sample) | |
return self.encode(sample) | |
class ControlNetConditioningEmbedding(nn.Module): | |
"""A small network to preprocess conditioning inputs, inspired by ControlNet.""" | |
def __init__(self, conditioning_embedding_channels: int, conditioning_channels: int = 4): | |
super().__init__() | |
self.conv_in = nn.Conv2d(conditioning_channels, conditioning_channels, kernel_size=3, padding=1) | |
self.norm_in = nn.GroupNorm(num_channels=conditioning_channels, num_groups=32, eps=1e-6) | |
self.conv_out = zero_module( | |
nn.Conv2d(conditioning_channels, conditioning_embedding_channels, kernel_size=3, padding=1) | |
) | |
def forward(self, conditioning): | |
"""Process the conditioning input through the network.""" | |
conditioning = self.norm_in(conditioning) | |
embedding = self.conv_in(conditioning) | |
embedding = F.silu(embedding) | |
embedding = self.conv_out(embedding) | |
return embedding | |
class QuickGELU(nn.Module): | |
"""A fast approximation of the GELU activation function.""" | |
def forward(self, x: torch.Tensor): | |
"""Apply the QuickGELU activation to the input tensor.""" | |
return x * torch.sigmoid(1.702 * x) | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm to handle fp16.""" | |
def forward(self, x: torch.Tensor): | |
"""Apply LayerNorm and preserve the input dtype.""" | |
orig_type = x.dtype | |
ret = super().forward(x) | |
return ret.type(orig_type) | |
class ResidualAttentionBlock(nn.Module): | |
"""A transformer-style block with self-attention and an MLP.""" | |
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): | |
super().__init__() | |
self.attn = nn.MultiheadAttention(d_model, n_head) | |
self.ln_1 = LayerNorm(d_model) | |
self.mlp = nn.Sequential( | |
OrderedDict( | |
[ | |
("c_fc", nn.Linear(d_model, d_model * 2)), | |
("gelu", QuickGELU()), | |
("c_proj", nn.Linear(d_model * 2, d_model)), | |
] | |
) | |
) | |
self.ln_2 = LayerNorm(d_model) | |
self.attn_mask = attn_mask | |
def attention(self, x: torch.Tensor): | |
"""Apply self-attention to the input tensor.""" | |
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None | |
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] | |
def forward(self, x: torch.Tensor): | |
"""Forward pass through the residual attention block.""" | |
x = x + self.attention(self.ln_1(x)) | |
x = x + self.mlp(self.ln_2(x)) | |
return x | |
class UNet2DConditionOutput(BaseOutput): | |
"""The output of UnifiedUNet2DConditionModel.""" | |
sample: torch.FloatTensor = None | |
class UNet2DConditionModel(OriginalUNet2DConditionModel, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): | |
"""A unified 2D UNet model extending OriginalUNet2DConditionModel with custom functionality.""" | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
sample_size: Optional[int] = None, | |
in_channels: int = 4, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
down_block_types: Tuple[str] = ( | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"CrossAttnDownBlock2D", | |
"DownBlock2D", | |
), | |
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), | |
only_cross_attention: Union[bool, Tuple[bool]] = False, | |
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), | |
layers_per_block: Union[int, Tuple[int]] = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
dropout: float = 0.0, | |
act_fn: str = "silu", | |
norm_num_groups: Optional[int] = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: Union[int, Tuple[int]] = 1280, | |
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1, | |
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None, | |
encoder_hid_dim: Optional[int] = None, | |
encoder_hid_dim_type: Optional[str] = None, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
num_attention_heads: Optional[Union[int, Tuple[int]]] = None, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = False, | |
class_embed_type: Optional[str] = None, | |
addition_embed_type: Optional[str] = None, | |
addition_time_embed_dim: Optional[int] = None, | |
num_class_embeds: Optional[int] = None, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
resnet_skip_time_act: bool = False, | |
resnet_out_scale_factor: float = 1.0, | |
time_embedding_type: str = "positional", | |
time_embedding_dim: Optional[int] = None, | |
time_embedding_act_fn: Optional[str] = None, | |
timestep_post_act: Optional[str] = None, | |
time_cond_proj_dim: Optional[int] = None, | |
conv_in_kernel: int = 3, | |
conv_out_kernel: int = 3, | |
projection_class_embeddings_input_dim: Optional[int] = None, | |
attention_type: str = "default", | |
class_embeddings_concat: bool = False, | |
mid_block_only_cross_attention: Optional[bool] = None, | |
cross_attention_norm: Optional[str] = None, | |
addition_embed_type_num_heads: int = 64, | |
): | |
"""Initialize the UnifiedUNet2DConditionModel.""" | |
super().__init__( | |
sample_size=sample_size, | |
in_channels=in_channels, | |
out_channels=out_channels, | |
center_input_sample=center_input_sample, | |
flip_sin_to_cos=flip_sin_to_cos, | |
freq_shift=freq_shift, | |
down_block_types=down_block_types, | |
mid_block_type=mid_block_type, | |
up_block_types=up_block_types, | |
only_cross_attention=only_cross_attention, | |
block_out_channels=block_out_channels, | |
layers_per_block=layers_per_block, | |
downsample_padding=downsample_padding, | |
mid_block_scale_factor=mid_block_scale_factor, | |
dropout=dropout, | |
act_fn=act_fn, | |
norm_num_groups=norm_num_groups, | |
norm_eps=norm_eps, | |
cross_attention_dim=cross_attention_dim, | |
transformer_layers_per_block=transformer_layers_per_block, | |
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block, | |
encoder_hid_dim=encoder_hid_dim, | |
encoder_hid_dim_type=encoder_hid_dim_type, | |
attention_head_dim=attention_head_dim, | |
num_attention_heads=num_attention_heads, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
class_embed_type=class_embed_type, | |
addition_embed_type=addition_embed_type, | |
addition_time_embed_dim=addition_time_embed_dim, | |
num_class_embeds=num_class_embeds, | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
resnet_skip_time_act=resnet_skip_time_act, | |
resnet_out_scale_factor=resnet_out_scale_factor, | |
time_embedding_type=time_embedding_type, | |
time_embedding_dim=time_embedding_dim, | |
time_embedding_act_fn=time_embedding_act_fn, | |
timestep_post_act=timestep_post_act, | |
time_cond_proj_dim=time_cond_proj_dim, | |
conv_in_kernel=conv_in_kernel, | |
conv_out_kernel=conv_out_kernel, | |
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim, | |
attention_type=attention_type, | |
class_embeddings_concat=class_embeddings_concat, | |
mid_block_only_cross_attention=mid_block_only_cross_attention, | |
cross_attention_norm=cross_attention_norm, | |
addition_embed_type_num_heads=addition_embed_type_num_heads, | |
) | |
# Additional attributes | |
self.denoise_encoder = None | |
self.information_transformer_layes = None | |
self.condition_embedding = None | |
self.agg_net = None | |
self.spatial_ch_projs = None | |
def init_vae_encoder(self, dtype): | |
self.denoise_encoder = Encoder() | |
if dtype is not None: | |
self.denoise_encoder.dtype = dtype | |
def init_information_transformer_layes(self): | |
num_trans_channel = 640 | |
num_trans_head = 8 | |
num_trans_layer = 2 | |
num_proj_channel = 320 | |
self.information_transformer_layes = nn.Sequential( | |
*[ResidualAttentionBlock(num_trans_channel, num_trans_head) for _ in range(num_trans_layer)] | |
) | |
self.spatial_ch_projs = zero_module(nn.Linear(num_trans_channel, num_proj_channel)) | |
def init_ControlNetConditioningEmbedding(self, channel=512): | |
self.condition_embedding = ControlNetConditioningEmbedding(320, channel) | |
def init_extra_weights(self): | |
self.agg_net = nn.ModuleList() | |
def load_additional_layers( | |
self, dtype: Optional[torch.dtype] = torch.float16, channel: int = 512, weight_path: Optional[str] = None | |
): | |
"""Load additional layers and weights from a file. | |
Args: | |
weight_path (str): Path to the weight file. | |
dtype (torch.dtype, optional): Data type for the loaded weights. Defaults to torch.float16. | |
channel (int): Conditioning embedding channel out size. Defaults 512. | |
""" | |
if self.denoise_encoder is None: | |
self.init_vae_encoder(dtype) | |
if self.information_transformer_layes is None: | |
self.init_information_transformer_layes() | |
if self.condition_embedding is None: | |
self.init_ControlNetConditioningEmbedding(channel) | |
if self.agg_net is None: | |
self.init_extra_weights() | |
# Load weights if provided | |
if weight_path is not None: | |
state_dict = torch.load(weight_path, weights_only=False) | |
self.load_state_dict(state_dict, strict=True) | |
# Move all modules to the same device and dtype as the model | |
device = next(self.parameters()).device | |
if dtype is not None or device is not None: | |
self.to(device=device, dtype=dtype or next(self.parameters()).dtype) | |
def to(self, *args, **kwargs): | |
"""Override to() to move all additional modules to the same device and dtype.""" | |
super().to(*args, **kwargs) | |
for module in [ | |
self.denoise_encoder, | |
self.information_transformer_layes, | |
self.condition_embedding, | |
self.agg_net, | |
self.spatial_ch_projs, | |
]: | |
if module is not None: | |
module.to(*args, **kwargs) | |
return self | |
def load_state_dict(self, state_dict, strict=True): | |
"""Load state dictionary into the model. | |
Args: | |
state_dict (dict): State dictionary to load. | |
strict (bool, optional): Whether to strictly enforce that all keys match. Defaults to True. | |
""" | |
core_dict = {} | |
additional_dicts = { | |
"denoise_encoder": {}, | |
"information_transformer_layes": {}, | |
"condition_embedding": {}, | |
"agg_net": {}, | |
"spatial_ch_projs": {}, | |
} | |
for key, value in state_dict.items(): | |
if key.startswith("denoise_encoder."): | |
additional_dicts["denoise_encoder"][key[len("denoise_encoder.") :]] = value | |
elif key.startswith("information_transformer_layes."): | |
additional_dicts["information_transformer_layes"][key[len("information_transformer_layes.") :]] = value | |
elif key.startswith("condition_embedding."): | |
additional_dicts["condition_embedding"][key[len("condition_embedding.") :]] = value | |
elif key.startswith("agg_net."): | |
additional_dicts["agg_net"][key[len("agg_net.") :]] = value | |
elif key.startswith("spatial_ch_projs."): | |
additional_dicts["spatial_ch_projs"][key[len("spatial_ch_projs.") :]] = value | |
else: | |
core_dict[key] = value | |
super().load_state_dict(core_dict, strict=False) | |
for module_name, module_dict in additional_dicts.items(): | |
module = getattr(self, module_name, None) | |
if module is not None and module_dict: | |
module.load_state_dict(module_dict, strict=strict) | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
class_labels: Optional[torch.Tensor] = None, | |
timestep_cond: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
mid_block_additional_residual: Optional[torch.Tensor] = None, | |
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
input_embedding: Optional[torch.Tensor] = None, | |
add_sample: bool = True, | |
return_dict: bool = True, | |
use_condition_embedding: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
"""Forward pass prioritizing the original modified implementation. | |
Args: | |
sample (torch.FloatTensor): The noisy input tensor with shape `(batch, channel, height, width)`. | |
timestep (Union[torch.Tensor, float, int]): The number of timesteps to denoise an input. | |
encoder_hidden_states (torch.Tensor): The encoder hidden states with shape `(batch, sequence_length, feature_dim)`. | |
class_labels (torch.Tensor, optional): Optional class labels for conditioning. | |
timestep_cond (torch.Tensor, optional): Conditional embeddings for timestep. | |
attention_mask (torch.Tensor, optional): An attention mask of shape `(batch, key_tokens)`. | |
cross_attention_kwargs (Dict[str, Any], optional): A kwargs dictionary for the AttentionProcessor. | |
added_cond_kwargs (Dict[str, torch.Tensor], optional): Additional embeddings to add to the UNet blocks. | |
down_block_additional_residuals (Tuple[torch.Tensor], optional): Residuals for down UNet blocks. | |
mid_block_additional_residual (torch.Tensor, optional): Residual for the middle UNet block. | |
down_intrablock_additional_residuals (Tuple[torch.Tensor], optional): Additional residuals within down blocks. | |
encoder_attention_mask (torch.Tensor, optional): A cross-attention mask of shape `(batch, sequence_length)`. | |
input_embedding (torch.Tensor, optional): Additional input embedding for preprocessing. | |
add_sample (bool): Whether to add the sample to the processed embedding. Defaults to True. | |
return_dict (bool): Whether to return a UNet2DConditionOutput. Defaults to True. | |
use_condition_embedding (bool): Whether to use the condition embedding. Defaults to True. | |
Returns: | |
Union[UNet2DConditionOutput, Tuple]: The processed sample tensor, either as a UNet2DConditionOutput or tuple. | |
""" | |
default_overall_up_factor = 2**self.num_upsamplers | |
forward_upsample_size = False | |
upsample_size = None | |
for dim in sample.shape[-2:]: | |
if dim % default_overall_up_factor != 0: | |
forward_upsample_size = True | |
break | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
if encoder_attention_mask is not None: | |
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 | |
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
t_emb = self.get_time_embed(sample=sample, timestep=timestep) | |
emb = self.time_embedding(t_emb, timestep_cond) | |
aug_emb = None | |
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels) | |
if class_emb is not None: | |
if self.config.class_embeddings_concat: | |
emb = torch.cat([emb, class_emb], dim=-1) | |
else: | |
emb = emb + class_emb | |
aug_emb = self.get_aug_embed( | |
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs | |
) | |
if self.config.addition_embed_type == "image_hint": | |
aug_emb, hint = aug_emb | |
sample = torch.cat([sample, hint], dim=1) | |
emb = emb + aug_emb if aug_emb is not None else emb | |
if self.time_embed_act is not None: | |
emb = self.time_embed_act(emb) | |
encoder_hidden_states = self.process_encoder_hidden_states( | |
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs | |
) | |
# 2. pre-process (following the original modified logic) | |
sample = self.conv_in(sample) # [B, 4, H, W] -> [B, 320, H, W] | |
if ( | |
input_embedding is not None | |
and self.condition_embedding is not None | |
and self.information_transformer_layes is not None | |
): | |
if use_condition_embedding: | |
input_embedding = self.condition_embedding(input_embedding) # [B, 320, H, W] | |
batch_size, channel, height, width = input_embedding.shape | |
concat_feat = ( | |
torch.cat([sample, input_embedding], dim=1) | |
.view(batch_size, 2 * channel, height * width) | |
.transpose(1, 2) | |
) | |
concat_feat = self.information_transformer_layes(concat_feat) | |
feat_alpha = self.spatial_ch_projs(concat_feat).transpose(1, 2).view(batch_size, channel, height, width) | |
sample = sample + feat_alpha if add_sample else feat_alpha # Update sample as in the original version | |
# 2.5 GLIGEN position net (kept from the original version) | |
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None: | |
cross_attention_kwargs = cross_attention_kwargs.copy() | |
gligen_args = cross_attention_kwargs.pop("gligen") | |
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)} | |
# 3. down (continues the standard flow) | |
if cross_attention_kwargs is not None: | |
cross_attention_kwargs = cross_attention_kwargs.copy() | |
lora_scale = cross_attention_kwargs.pop("scale", 1.0) | |
else: | |
lora_scale = 1.0 | |
if USE_PEFT_BACKEND: | |
scale_lora_layers(self, lora_scale) | |
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None | |
is_adapter = down_intrablock_additional_residuals is not None | |
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None: | |
deprecate( | |
"T2I should not use down_block_additional_residuals", | |
"1.3.0", | |
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \ | |
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \ | |
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ", | |
standard_warn=False, | |
) | |
down_intrablock_additional_residuals = down_block_additional_residuals | |
is_adapter = True | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
additional_residuals = {} | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0) | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
**additional_residuals, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
if is_adapter and len(down_intrablock_additional_residuals) > 0: | |
sample += down_intrablock_additional_residuals.pop(0) | |
down_block_res_samples += res_samples | |
if is_controlnet: | |
new_down_block_res_samples = () | |
for down_block_res_sample, down_block_additional_residual in zip( | |
down_block_res_samples, down_block_additional_residuals | |
): | |
down_block_res_sample = down_block_res_sample + down_block_additional_residual | |
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) | |
down_block_res_samples = new_down_block_res_samples | |
# 4. mid | |
if self.mid_block is not None: | |
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | |
sample = self.mid_block( | |
sample, | |
emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
cross_attention_kwargs=cross_attention_kwargs, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = self.mid_block(sample, emb) | |
if ( | |
is_adapter | |
and len(down_intrablock_additional_residuals) > 0 | |
and sample.shape == down_intrablock_additional_residuals[0].shape | |
): | |
sample += down_intrablock_additional_residuals.pop(0) | |
if is_controlnet: | |
sample = sample + mid_block_additional_residual | |
# 5. up | |
for i, upsample_block in enumerate(self.up_blocks): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
upsample_size=upsample_size, | |
) | |
# 6. post-process | |
if self.conv_norm_out: | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if USE_PEFT_BACKEND: | |
unscale_lora_layers(self, lora_scale) | |
if not return_dict: | |
return (sample,) | |
return UNet2DConditionOutput(sample=sample) | |
class LocalAttention: | |
"""A class to handle local attention by splitting tensors into overlapping grids for processing.""" | |
def __init__(self, kernel_size=None, overlap=0.5): | |
"""Initialize the LocalAttention module. | |
Args: | |
kernel_size (tuple[int, int], optional): Size of the grid (height, width). Defaults to None. | |
overlap (float): Overlap factor between adjacent grids (0.0 to 1.0). Defaults to 0.5. | |
""" | |
super().__init__() | |
self.kernel_size = kernel_size | |
self.overlap = overlap | |
def grids_list(self, x): | |
"""Split the input tensor into a list of non-overlapping grid patches. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). | |
Returns: | |
list[torch.Tensor]: List of tensor patches. | |
""" | |
b, c, h, w = x.shape | |
self.original_size = (b, c, h, w) | |
assert b == 1 | |
k1, k2 = self.kernel_size | |
if h < k1: | |
k1 = h | |
if w < k2: | |
k2 = w | |
num_row = (h - 1) // k1 + 1 | |
num_col = (w - 1) // k2 + 1 | |
self.nr = num_row | |
self.nc = num_col | |
import math | |
step_j = k2 if num_col == 1 else math.ceil(k2 * self.overlap) | |
step_i = k1 if num_row == 1 else math.ceil(k1 * self.overlap) | |
parts = [] | |
idxes = [] | |
i = 0 | |
last_i = False | |
while i < h and not last_i: | |
j = 0 | |
if i + k1 >= h: | |
i = h - k1 | |
last_i = True | |
last_j = False | |
while j < w and not last_j: | |
if j + k2 >= w: | |
j = w - k2 | |
last_j = True | |
parts.append(x[:, :, i : i + k1, j : j + k2]) | |
idxes.append({"i": i, "j": j}) | |
j = j + step_j | |
i = i + step_i | |
return parts | |
def grids(self, x): | |
"""Split the input tensor into overlapping grid patches and concatenate them. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). | |
Returns: | |
torch.Tensor: Concatenated tensor of all grid patches. | |
""" | |
b, c, h, w = x.shape | |
self.original_size = (b, c, h, w) | |
assert b == 1 | |
k1, k2 = self.kernel_size | |
if h < k1: | |
k1 = h | |
if w < k2: | |
k2 = w | |
self.tile_weights = self._gaussian_weights(k2, k1) | |
num_row = (h - 1) // k1 + 1 | |
num_col = (w - 1) // k2 + 1 | |
self.nr = num_row | |
self.nc = num_col | |
import math | |
step_j = k2 if num_col == 1 else math.ceil(k2 * self.overlap) | |
step_i = k1 if num_row == 1 else math.ceil(k1 * self.overlap) | |
parts = [] | |
idxes = [] | |
i = 0 | |
last_i = False | |
while i < h and not last_i: | |
j = 0 | |
if i + k1 >= h: | |
i = h - k1 | |
last_i = True | |
last_j = False | |
while j < w and not last_j: | |
if j + k2 >= w: | |
j = w - k2 | |
last_j = True | |
parts.append(x[:, :, i : i + k1, j : j + k2]) | |
idxes.append({"i": i, "j": j}) | |
j = j + step_j | |
i = i + step_i | |
self.idxes = idxes | |
return torch.cat(parts, dim=0) | |
def _gaussian_weights(self, tile_width, tile_height): | |
"""Generate a Gaussian weight mask for tile contributions. | |
Args: | |
tile_width (int): Width of the tile. | |
tile_height (int): Height of the tile. | |
Returns: | |
torch.Tensor: Gaussian weight tensor of shape (channels, height, width). | |
""" | |
import numpy as np | |
from numpy import exp, pi, sqrt | |
latent_width = tile_width | |
latent_height = tile_height | |
var = 0.01 | |
midpoint = (latent_width - 1) / 2 | |
x_probs = [ | |
exp(-(x - midpoint) * (x - midpoint) / (latent_width * latent_width) / (2 * var)) / sqrt(2 * pi * var) | |
for x in range(latent_width) | |
] | |
midpoint = latent_height / 2 | |
y_probs = [ | |
exp(-(y - midpoint) * (y - midpoint) / (latent_height * latent_height) / (2 * var)) / sqrt(2 * pi * var) | |
for y in range(latent_height) | |
] | |
weights = np.outer(y_probs, x_probs) | |
return torch.tile(torch.tensor(weights, device=torch.device("cuda")), (4, 1, 1)) | |
def grids_inverse(self, outs): | |
"""Reconstruct the original tensor from processed grid patches with overlap blending. | |
Args: | |
outs (torch.Tensor): Processed grid patches. | |
Returns: | |
torch.Tensor: Reconstructed tensor of original size. | |
""" | |
preds = torch.zeros(self.original_size).to(outs.device) | |
b, c, h, w = self.original_size | |
count_mt = torch.zeros((b, 4, h, w)).to(outs.device) | |
k1, k2 = self.kernel_size | |
for cnt, each_idx in enumerate(self.idxes): | |
i = each_idx["i"] | |
j = each_idx["j"] | |
preds[0, :, i : i + k1, j : j + k2] += outs[cnt, :, :, :] * self.tile_weights | |
count_mt[0, :, i : i + k1, j : j + k2] += self.tile_weights | |
del outs | |
torch.cuda.empty_cache() | |
return preds / count_mt | |
def _pad(self, x): | |
"""Pad the input tensor to align with kernel size. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). | |
Returns: | |
tuple: Padded tensor and padding values. | |
""" | |
b, c, h, w = x.shape | |
k1, k2 = self.kernel_size | |
mod_pad_h = (k1 - h % k1) % k1 | |
mod_pad_w = (k2 - w % k2) % k2 | |
pad = (mod_pad_w // 2, mod_pad_w - mod_pad_w // 2, mod_pad_h // 2, mod_pad_h - mod_pad_h // 2) | |
x = F.pad(x, pad, "reflect") | |
return x, pad | |
def forward(self, x): | |
"""Apply local attention by splitting into grids and reconstructing. | |
Args: | |
x (torch.Tensor): Input tensor of shape (batch, channels, height, width). | |
Returns: | |
torch.Tensor: Processed tensor of original size. | |
""" | |
b, c, h, w = x.shape | |
qkv = self.grids(x) | |
out = self.grids_inverse(qkv) | |
return out | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4 | |
Args: | |
noise_cfg (torch.Tensor): Noise configuration tensor. | |
noise_pred_text (torch.Tensor): Predicted noise from text-conditioned model. | |
guidance_rescale (float): Rescaling factor for guidance. Defaults to 0.0. | |
Returns: | |
torch.Tensor: Rescaled noise configuration. | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
def retrieve_latents( | |
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
): | |
"""Retrieve latents from an encoder output. | |
Args: | |
encoder_output (torch.Tensor): Output from an encoder (e.g., VAE). | |
generator (torch.Generator, optional): Random generator for sampling. Defaults to None. | |
sample_mode (str): Sampling mode ("sample" or "argmax"). Defaults to "sample". | |
Returns: | |
torch.Tensor: Retrieved latent tensor. | |
""" | |
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
return encoder_output.latent_dist.sample(generator) | |
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
return encoder_output.latent_dist.mode() | |
elif hasattr(encoder_output, "latents"): | |
return encoder_output.latents | |
else: | |
raise AttributeError("Could not access latents of provided encoder_output") | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
**kwargs, | |
): | |
""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class FaithDiffStableDiffusionXLPipeline( | |
DiffusionPipeline, | |
StableDiffusionMixin, | |
FromSingleFileMixin, | |
StableDiffusionXLLoraLoaderMixin, | |
TextualInversionLoaderMixin, | |
IPAdapterMixin, | |
): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion XL. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
The pipeline also inherits the following loading methods: | |
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files | |
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion XL uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
text_encoder_2 ([` CLIPTextModelWithProjection`]): | |
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), | |
specifically the | |
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) | |
variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
tokenizer_2 (`CLIPTokenizer`): | |
Second Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | |
`stabilityai/stable-diffusion-xl-base-1-0`. | |
add_watermarker (`bool`, *optional*): | |
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to | |
watermark output images. If not defined, it will default to True if the package is installed, otherwise no | |
watermarker will be used. | |
""" | |
unet_model = UNet2DConditionModel | |
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" | |
_optional_components = ["tokenizer", "tokenizer_2", "text_encoder", "text_encoder_2", "feature_extractor", "unet"] | |
_callback_tensor_inputs = [ | |
"latents", | |
"prompt_embeds", | |
"negative_prompt_embeds", | |
"add_text_embeds", | |
"add_time_ids", | |
"negative_pooled_prompt_embeds", | |
"negative_add_time_ids", | |
] | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
text_encoder_2: CLIPTextModelWithProjection, | |
tokenizer: CLIPTokenizer, | |
tokenizer_2: CLIPTokenizer, | |
unet: OriginalUNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
force_zeros_for_empty_prompt: bool = True, | |
add_watermarker: Optional[bool] = None, | |
): | |
super().__init__() | |
self.register_modules( | |
vae=vae, | |
text_encoder=text_encoder, | |
text_encoder_2=text_encoder_2, | |
tokenizer=tokenizer, | |
tokenizer_2=tokenizer_2, | |
unet=unet, | |
scheduler=scheduler, | |
) | |
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
self.DDPMScheduler = DDPMScheduler.from_config(self.scheduler.config, subfolder="scheduler") | |
self.default_sample_size = self.unet.config.sample_size if unet is not None else 128 | |
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() | |
if add_watermarker: | |
self.watermark = StableDiffusionXLWatermarker() | |
else: | |
self.watermark = None | |
def encode_prompt( | |
self, | |
prompt: str, | |
prompt_2: Optional[str] = None, | |
device: Optional[torch.device] = None, | |
num_images_per_prompt: int = 1, | |
do_classifier_free_guidance: bool = True, | |
negative_prompt: Optional[str] = None, | |
negative_prompt_2: Optional[str] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
clip_skip: Optional[int] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
prompt to be encoded | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
lora_scale (`float`, *optional*): | |
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
""" | |
device = "cuda" # device or self._execution_device | |
# set lora scale so that monkey patched LoRA | |
# function of text encoder can correctly access it | |
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
self._lora_scale = lora_scale | |
# dynamically adjust the LoRA scale | |
if self.text_encoder is not None: | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if not USE_PEFT_BACKEND: | |
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
else: | |
scale_lora_layers(self.text_encoder_2, lora_scale) | |
prompt = [prompt] if isinstance(prompt, str) else prompt | |
if prompt is not None: | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
# Define tokenizers and text encoders | |
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
text_encoders = ( | |
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
) | |
dtype = text_encoders[0].dtype | |
if prompt_embeds is None: | |
prompt_2 = prompt_2 or prompt | |
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
# textual inversion: process multi-vector tokens if necessary | |
prompt_embeds_list = [] | |
prompts = [prompt, prompt_2] | |
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
text_inputs = tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_input_ids = text_inputs.input_ids | |
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
text_input_ids, untruncated_ids | |
): | |
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
logger.warning( | |
"The following part of your input was truncated because CLIP can only handle sequences up to" | |
f" {tokenizer.model_max_length} tokens: {removed_text}" | |
) | |
text_encoder = text_encoder.to(dtype) | |
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
pooled_prompt_embeds = prompt_embeds[0] | |
if clip_skip is None: | |
prompt_embeds = prompt_embeds.hidden_states[-2] | |
else: | |
# "2" because SDXL always indexes from the penultimate layer. | |
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
prompt_embeds_list.append(prompt_embeds) | |
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
# get unconditional embeddings for classifier free guidance | |
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = negative_prompt or "" | |
negative_prompt_2 = negative_prompt_2 or negative_prompt | |
# normalize str to list | |
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
negative_prompt_2 = ( | |
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
) | |
uncond_tokens: List[str] | |
if prompt is not None and type(prompt) is not type(negative_prompt): | |
raise TypeError( | |
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
f" {type(prompt)}." | |
) | |
elif batch_size != len(negative_prompt): | |
raise ValueError( | |
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
" the batch size of `prompt`." | |
) | |
else: | |
uncond_tokens = [negative_prompt, negative_prompt_2] | |
negative_prompt_embeds_list = [] | |
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
if isinstance(self, TextualInversionLoaderMixin): | |
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
max_length = prompt_embeds.shape[1] | |
uncond_input = tokenizer( | |
negative_prompt, | |
padding="max_length", | |
max_length=max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
negative_prompt_embeds = text_encoder( | |
uncond_input.input_ids.to(device), | |
output_hidden_states=True, | |
) | |
# We are only ALWAYS interested in the pooled output of the final text encoder | |
negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
negative_prompt_embeds_list.append(negative_prompt_embeds) | |
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
if self.text_encoder_2 is not None: | |
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
else: | |
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
if do_classifier_free_guidance: | |
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
seq_len = negative_prompt_embeds.shape[1] | |
if self.text_encoder_2 is not None: | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
else: | |
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
if do_classifier_free_guidance: | |
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
bs_embed * num_images_per_prompt, -1 | |
) | |
if self.text_encoder is not None: | |
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder, lora_scale) | |
if self.text_encoder_2 is not None: | |
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
# Retrieve the original scale by scaling back the LoRA layers | |
unscale_lora_layers(self.text_encoder_2, lora_scale) | |
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def check_image_size(self, x, padder_size=8): | |
# 获取图像的宽高 | |
width, height = x.size | |
padder_size = padder_size | |
# 计算需要填充的高度和宽度 | |
mod_pad_h = (padder_size - height % padder_size) % padder_size | |
mod_pad_w = (padder_size - width % padder_size) % padder_size | |
x_np = np.array(x) | |
# 使用 ImageOps.expand 进行填充 | |
x_padded = cv2.copyMakeBorder( | |
x_np, top=0, bottom=mod_pad_h, left=0, right=mod_pad_w, borderType=cv2.BORDER_REPLICATE | |
) | |
x = PIL.Image.fromarray(x_padded) | |
# x = x.resize((width + mod_pad_w, height + mod_pad_h)) | |
return x, width, height, width + mod_pad_w, height + mod_pad_h | |
def check_inputs( | |
self, | |
lr_img, | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt=None, | |
negative_prompt_2=None, | |
prompt_embeds=None, | |
negative_prompt_embeds=None, | |
pooled_prompt_embeds=None, | |
negative_pooled_prompt_embeds=None, | |
callback_on_step_end_tensor_inputs=None, | |
): | |
if lr_img is None: | |
raise ValueError("`lr_image` must be provided!") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
raise ValueError( | |
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
f" {type(callback_steps)}." | |
) | |
if callback_on_step_end_tensor_inputs is not None and not all( | |
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
): | |
raise ValueError( | |
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
) | |
if prompt is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt_2 is not None and prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
" only forward one of the two." | |
) | |
elif prompt is None and prompt_embeds is None: | |
raise ValueError( | |
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
) | |
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
if negative_prompt is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
raise ValueError( | |
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
) | |
if prompt_embeds is not None and negative_prompt_embeds is not None: | |
if prompt_embeds.shape != negative_prompt_embeds.shape: | |
raise ValueError( | |
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
f" {negative_prompt_embeds.shape}." | |
) | |
if prompt_embeds is not None and pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
) | |
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
raise ValueError( | |
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
) | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents | |
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
if isinstance(generator, list) and len(generator) != batch_size: | |
raise ValueError( | |
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
) | |
if latents is None: | |
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
else: | |
latents = latents.to(device) | |
# scale the initial noise by the standard deviation required by the scheduler | |
latents = latents * self.scheduler.init_noise_sigma | |
return latents | |
def upcast_vae(self): | |
dtype = self.vae.dtype | |
self.vae.to(dtype=torch.float32) | |
use_torch_2_0_or_xformers = isinstance( | |
self.vae.decoder.mid_block.attentions[0].processor, | |
( | |
AttnProcessor2_0, | |
XFormersAttnProcessor, | |
LoRAXFormersAttnProcessor, | |
LoRAAttnProcessor2_0, | |
FusedAttnProcessor2_0, | |
), | |
) | |
# if xformers or torch_2_0 is used attention block does not need | |
# to be in float32 which can save lots of memory | |
if use_torch_2_0_or_xformers: | |
self.vae.post_quant_conv.to(dtype) | |
self.vae.decoder.conv_in.to(dtype) | |
self.vae.decoder.mid_block.to(dtype) | |
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding | |
def get_guidance_scale_embedding( | |
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 | |
) -> torch.FloatTensor: | |
""" | |
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 | |
Args: | |
w (`torch.Tensor`): | |
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. | |
embedding_dim (`int`, *optional*, defaults to 512): | |
Dimension of the embeddings to generate. | |
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): | |
Data type of the generated embeddings. | |
Returns: | |
`torch.FloatTensor`: Embedding vectors with shape `(len(w), embedding_dim)`. | |
""" | |
assert len(w.shape) == 1 | |
w = w * 1000.0 | |
half_dim = embedding_dim // 2 | |
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) | |
emb = w.to(dtype)[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1)) | |
assert emb.shape == (w.shape[0], embedding_dim) | |
return emb | |
def set_encoder_tile_settings( | |
self, | |
denoise_encoder_tile_sample_min_size=1024, | |
denoise_encoder_sample_overlap_factor=0.25, | |
vae_sample_size=1024, | |
vae_tile_overlap_factor=0.25, | |
): | |
self.unet.denoise_encoder.tile_sample_min_size = denoise_encoder_tile_sample_min_size | |
self.unet.denoise_encoder.tile_overlap_factor = denoise_encoder_sample_overlap_factor | |
self.vae.config.sample_size = vae_sample_size | |
self.vae.tile_overlap_factor = vae_tile_overlap_factor | |
def enable_vae_tiling(self): | |
r""" | |
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
processing larger images. | |
""" | |
self.vae.enable_tiling() | |
self.unet.denoise_encoder.enable_tiling() | |
def disable_vae_tiling(self): | |
r""" | |
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
computing decoding in one step. | |
""" | |
self.vae.disable_tiling() | |
self.unet.denoise_encoder.disable_tiling() | |
def guidance_scale(self): | |
return self._guidance_scale | |
def guidance_rescale(self): | |
return self._guidance_rescale | |
def clip_skip(self): | |
return self._clip_skip | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
def do_classifier_free_guidance(self): | |
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None | |
def cross_attention_kwargs(self): | |
return self._cross_attention_kwargs | |
def denoising_end(self): | |
return self._denoising_end | |
def num_timesteps(self): | |
return self._num_timesteps | |
def interrupt(self): | |
return self._interrupt | |
def prepare_image_latents( | |
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None | |
): | |
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
raise ValueError( | |
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
) | |
image = image.to(device=device, dtype=dtype) | |
batch_size = batch_size * num_images_per_prompt | |
if image.shape[1] == 4: | |
image_latents = image | |
else: | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
# needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
# if needs_upcasting: | |
# image = image.float() | |
# self.upcast_vae() | |
self.unet.denoise_encoder.to(device=image.device, dtype=image.dtype) | |
image_latents = self.unet.denoise_encoder(image) | |
self.unet.denoise_encoder.to("cpu") | |
# cast back to fp16 if needed | |
# if needs_upcasting: | |
# self.vae.to(dtype=torch.float16) | |
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: | |
# expand image_latents for batch_size | |
deprecation_message = ( | |
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" | |
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" | |
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" | |
" your script to pass as many initial images as text prompts to suppress this warning." | |
) | |
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) | |
additional_image_per_prompt = batch_size // image_latents.shape[0] | |
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) | |
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0: | |
raise ValueError( | |
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." | |
) | |
else: | |
image_latents = torch.cat([image_latents], dim=0) | |
if do_classifier_free_guidance: | |
image_latents = image_latents | |
if image_latents.dtype != self.vae.dtype: | |
image_latents = image_latents.to(dtype=self.vae.dtype) | |
return image_latents | |
def __call__( | |
self, | |
lr_img: PipelineImageInput = None, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
start_point: Optional[str] = "noise", | |
timesteps: List[int] = None, | |
denoising_end: Optional[float] = None, | |
overlap: float = 0.5, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
target_size: Optional[Tuple[int, int]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
add_sample: bool = True, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
lr_img (PipelineImageInput, optional): Low-resolution input image for conditioning the generation process. | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
start_point (str, *optional*): | |
The starting point for the generation process. Can be "noise" (random noise) or "lr" (low-resolution image). | |
Defaults to "noise". | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
overlap (float): | |
Overlap factor for local attention tiling (between 0.0 and 1.0). Controls the overlap between adjacent | |
grid patches during processing. Defaults to 0.5. | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
clip_skip (`int`, *optional*): | |
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
the output of the pre-final layer will be used for computing the prompt embeddings. | |
callback_on_step_end (`Callable`, *optional*): | |
A function that calls at the end of each denoising steps during the inference. The function is called | |
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
`callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
add_sample (bool): | |
Whether to include sample conditioning (e.g., low-resolution image) in the UNet during denoising. | |
Defaults to True. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
lr_img, | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = denoising_end | |
self._interrupt = False | |
self.tlc_vae_latents = LocalAttention((target_size[0] // 8, target_size[1] // 8), overlap) | |
self.tlc_vae_img = LocalAttention((target_size[0] // 8, target_size[1] // 8), overlap) | |
# 2. Define call parameters | |
batch_size = 1 | |
num_images_per_prompt = 1 | |
device = torch.device("cuda") # self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
num_samples = num_images_per_prompt | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt, | |
num_images_per_prompt=num_samples, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
lora_scale=lora_scale, | |
) | |
lr_img_list = [lr_img] | |
lr_img = self.image_processor.preprocess(lr_img_list, height=height, width=width).to( | |
device, dtype=prompt_embeds.dtype | |
) | |
# 4. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
image_latents = self.prepare_image_latents( | |
lr_img, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, self.do_classifier_free_guidance | |
) | |
image_latents = self.tlc_vae_img.grids(image_latents) | |
# 5. Prepare latent variables | |
num_channels_latents = self.vae.config.latent_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
if start_point == "lr": | |
latents_condition_image = self.vae.encode(lr_img * 2 - 1).latent_dist.sample() | |
latents_condition_image = latents_condition_image * self.vae.config.scaling_factor | |
start_steps_tensor = torch.randint(999, 999 + 1, (latents.shape[0],), device=latents.device) | |
start_steps_tensor = start_steps_tensor.long() | |
latents = self.DDPMScheduler.add_noise(latents_condition_image[0:1, ...], latents, start_steps_tensor) | |
latents = self.tlc_vae_latents.grids(latents) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * image_latents.shape[0] | |
# 7. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
# 8. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
# 8.1 Apply denoising_end | |
if ( | |
self.denoising_end is not None | |
and isinstance(self.denoising_end, float) | |
and self.denoising_end > 0 | |
and self.denoising_end < 1 | |
): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
# 9. Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
self._num_timesteps = len(timesteps) | |
sub_latents_num = latents.shape[0] | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if i >= 1: | |
latents = self.tlc_vae_latents.grids(latents).to(dtype=latents.dtype) | |
if self.interrupt: | |
continue | |
concat_grid = [] | |
for sub_num in range(sub_latents_num): | |
self.scheduler.__dict__.update(views_scheduler_status[sub_num]) | |
sub_latents = latents[sub_num, :, :, :].unsqueeze(0) | |
img_sub_latents = image_latents[sub_num, :, :, :].unsqueeze(0) | |
latent_model_input = ( | |
torch.cat([sub_latents] * 2) if self.do_classifier_free_guidance else sub_latents | |
) | |
img_sub_latents = ( | |
torch.cat([img_sub_latents] * 2) if self.do_classifier_free_guidance else img_sub_latents | |
) | |
scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
pos_height = self.tlc_vae_latents.idxes[sub_num]["i"] | |
pos_width = self.tlc_vae_latents.idxes[sub_num]["j"] | |
add_time_ids = [ | |
torch.tensor([original_size]), | |
torch.tensor([[pos_height, pos_width]]), | |
torch.tensor([target_size]), | |
] | |
add_time_ids = torch.cat(add_time_ids, dim=1).to( | |
img_sub_latents.device, dtype=img_sub_latents.dtype | |
) | |
add_time_ids = add_time_ids.repeat(2, 1).to(dtype=img_sub_latents.dtype) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
with torch.amp.autocast( | |
device.type, dtype=latents.dtype, enabled=latents.dtype != self.unet.dtype | |
): | |
noise_pred = self.unet( | |
scaled_latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
input_embedding=img_sub_latents, | |
add_sample=add_sample, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://huggingface.co/papers/2305.08891 | |
noise_pred = rescale_noise_cfg( | |
noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = sub_latents.dtype | |
sub_latents = self.scheduler.step( | |
noise_pred, t, sub_latents, **extra_step_kwargs, return_dict=False | |
)[0] | |
views_scheduler_status[sub_num] = copy.deepcopy(self.scheduler.__dict__) | |
concat_grid.append(sub_latents) | |
if latents.dtype != sub_latents: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
sub_latents = sub_latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
latents = self.tlc_vae_latents.grids_inverse(torch.cat(concat_grid, dim=0)).to(sub_latents.dtype) | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
elif latents.dtype != self.vae.dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
self.vae = self.vae.to(latents.dtype) | |
# unscale/denormalize the latents | |
# denormalize with the mean and std if available and not None | |
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
if has_latents_mean and has_latents_std: | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents_std = ( | |
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
else: | |
latents = latents / self.vae.config.scaling_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |