Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from typing import Optional, Tuple, Type, Union | |
import torch | |
from ..utils import get_logger, is_peft_available, is_peft_version | |
from .hooks import HookRegistry, ModelHook | |
logger = get_logger(__name__) # pylint: disable=invalid-name | |
# fmt: off | |
_LAYERWISE_CASTING_HOOK = "layerwise_casting" | |
_PEFT_AUTOCAST_DISABLE_HOOK = "peft_autocast_disable" | |
SUPPORTED_PYTORCH_LAYERS = ( | |
torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d, | |
torch.nn.ConvTranspose1d, torch.nn.ConvTranspose2d, torch.nn.ConvTranspose3d, | |
torch.nn.Linear, | |
) | |
DEFAULT_SKIP_MODULES_PATTERN = ("pos_embed", "patch_embed", "norm", "^proj_in$", "^proj_out$") | |
# fmt: on | |
_SHOULD_DISABLE_PEFT_INPUT_AUTOCAST = is_peft_available() and is_peft_version(">", "0.14.0") | |
if _SHOULD_DISABLE_PEFT_INPUT_AUTOCAST: | |
from peft.helpers import disable_input_dtype_casting | |
from peft.tuners.tuners_utils import BaseTunerLayer | |
class LayerwiseCastingHook(ModelHook): | |
r""" | |
A hook that casts the weights of a module to a high precision dtype for computation, and to a low precision dtype | |
for storage. This process may lead to quality loss in the output, but can significantly reduce the memory | |
footprint. | |
""" | |
_is_stateful = False | |
def __init__(self, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool) -> None: | |
self.storage_dtype = storage_dtype | |
self.compute_dtype = compute_dtype | |
self.non_blocking = non_blocking | |
def initialize_hook(self, module: torch.nn.Module): | |
module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) | |
return module | |
def deinitalize_hook(self, module: torch.nn.Module): | |
raise NotImplementedError( | |
"LayerwiseCastingHook does not support deinitialization. A model once enabled with layerwise casting will " | |
"have casted its weights to a lower precision dtype for storage. Casting this back to the original dtype " | |
"will lead to precision loss, which might have an impact on the model's generation quality. The model should " | |
"be re-initialized and loaded in the original dtype." | |
) | |
def pre_forward(self, module: torch.nn.Module, *args, **kwargs): | |
module.to(dtype=self.compute_dtype, non_blocking=self.non_blocking) | |
return args, kwargs | |
def post_forward(self, module: torch.nn.Module, output): | |
module.to(dtype=self.storage_dtype, non_blocking=self.non_blocking) | |
return output | |
class PeftInputAutocastDisableHook(ModelHook): | |
r""" | |
A hook that disables the casting of inputs to the module weight dtype during the forward pass. By default, PEFT | |
casts the inputs to the weight dtype of the module, which can lead to precision loss. | |
The reasons for needing this are: | |
- If we don't add PEFT layers' weight names to `skip_modules_pattern` when applying layerwise casting, the | |
inputs will be casted to the, possibly lower precision, storage dtype. Reference: | |
https://github.com/huggingface/peft/blob/0facdebf6208139cbd8f3586875acb378813dd97/src/peft/tuners/lora/layer.py#L706 | |
- We can, on our end, use something like accelerate's `send_to_device` but for dtypes. This way, we can ensure | |
that the inputs are casted to the computation dtype correctly always. However, there are two goals we are | |
hoping to achieve: | |
1. Making forward implementations independent of device/dtype casting operations as much as possible. | |
2. Performing inference without losing information from casting to different precisions. With the current | |
PEFT implementation (as linked in the reference above), and assuming running layerwise casting inference | |
with storage_dtype=torch.float8_e4m3fn and compute_dtype=torch.bfloat16, inputs are cast to | |
torch.float8_e4m3fn in the lora layer. We will then upcast back to torch.bfloat16 when we continue the | |
forward pass in PEFT linear forward or Diffusers layer forward, with a `send_to_dtype` operation from | |
LayerwiseCastingHook. This will be a lossy operation and result in poorer generation quality. | |
""" | |
def new_forward(self, module: torch.nn.Module, *args, **kwargs): | |
with disable_input_dtype_casting(module): | |
return self.fn_ref.original_forward(*args, **kwargs) | |
def apply_layerwise_casting( | |
module: torch.nn.Module, | |
storage_dtype: torch.dtype, | |
compute_dtype: torch.dtype, | |
skip_modules_pattern: Union[str, Tuple[str, ...]] = "auto", | |
skip_modules_classes: Optional[Tuple[Type[torch.nn.Module], ...]] = None, | |
non_blocking: bool = False, | |
) -> None: | |
r""" | |
Applies layerwise casting to a given module. The module expected here is a Diffusers ModelMixin but it can be any | |
nn.Module using diffusers layers or pytorch primitives. | |
Example: | |
```python | |
>>> import torch | |
>>> from diffusers import CogVideoXTransformer3DModel | |
>>> transformer = CogVideoXTransformer3DModel.from_pretrained( | |
... model_id, subfolder="transformer", torch_dtype=torch.bfloat16 | |
... ) | |
>>> apply_layerwise_casting( | |
... transformer, | |
... storage_dtype=torch.float8_e4m3fn, | |
... compute_dtype=torch.bfloat16, | |
... skip_modules_pattern=["patch_embed", "norm", "proj_out"], | |
... non_blocking=True, | |
... ) | |
``` | |
Args: | |
module (`torch.nn.Module`): | |
The module whose leaf modules will be cast to a high precision dtype for computation, and to a low | |
precision dtype for storage. | |
storage_dtype (`torch.dtype`): | |
The dtype to cast the module to before/after the forward pass for storage. | |
compute_dtype (`torch.dtype`): | |
The dtype to cast the module to during the forward pass for computation. | |
skip_modules_pattern (`Tuple[str, ...]`, defaults to `"auto"`): | |
A list of patterns to match the names of the modules to skip during the layerwise casting process. If set | |
to `"auto"`, the default patterns are used. If set to `None`, no modules are skipped. If set to `None` | |
alongside `skip_modules_classes` being `None`, the layerwise casting is applied directly to the module | |
instead of its internal submodules. | |
skip_modules_classes (`Tuple[Type[torch.nn.Module], ...]`, defaults to `None`): | |
A list of module classes to skip during the layerwise casting process. | |
non_blocking (`bool`, defaults to `False`): | |
If `True`, the weight casting operations are non-blocking. | |
""" | |
if skip_modules_pattern == "auto": | |
skip_modules_pattern = DEFAULT_SKIP_MODULES_PATTERN | |
if skip_modules_classes is None and skip_modules_pattern is None: | |
apply_layerwise_casting_hook(module, storage_dtype, compute_dtype, non_blocking) | |
return | |
_apply_layerwise_casting( | |
module, | |
storage_dtype, | |
compute_dtype, | |
skip_modules_pattern, | |
skip_modules_classes, | |
non_blocking, | |
) | |
_disable_peft_input_autocast(module) | |
def _apply_layerwise_casting( | |
module: torch.nn.Module, | |
storage_dtype: torch.dtype, | |
compute_dtype: torch.dtype, | |
skip_modules_pattern: Optional[Tuple[str, ...]] = None, | |
skip_modules_classes: Optional[Tuple[Type[torch.nn.Module], ...]] = None, | |
non_blocking: bool = False, | |
_prefix: str = "", | |
) -> None: | |
should_skip = (skip_modules_classes is not None and isinstance(module, skip_modules_classes)) or ( | |
skip_modules_pattern is not None and any(re.search(pattern, _prefix) for pattern in skip_modules_pattern) | |
) | |
if should_skip: | |
logger.debug(f'Skipping layerwise casting for layer "{_prefix}"') | |
return | |
if isinstance(module, SUPPORTED_PYTORCH_LAYERS): | |
logger.debug(f'Applying layerwise casting to layer "{_prefix}"') | |
apply_layerwise_casting_hook(module, storage_dtype, compute_dtype, non_blocking) | |
return | |
for name, submodule in module.named_children(): | |
layer_name = f"{_prefix}.{name}" if _prefix else name | |
_apply_layerwise_casting( | |
submodule, | |
storage_dtype, | |
compute_dtype, | |
skip_modules_pattern, | |
skip_modules_classes, | |
non_blocking, | |
_prefix=layer_name, | |
) | |
def apply_layerwise_casting_hook( | |
module: torch.nn.Module, storage_dtype: torch.dtype, compute_dtype: torch.dtype, non_blocking: bool | |
) -> None: | |
r""" | |
Applies a `LayerwiseCastingHook` to a given module. | |
Args: | |
module (`torch.nn.Module`): | |
The module to attach the hook to. | |
storage_dtype (`torch.dtype`): | |
The dtype to cast the module to before the forward pass. | |
compute_dtype (`torch.dtype`): | |
The dtype to cast the module to during the forward pass. | |
non_blocking (`bool`): | |
If `True`, the weight casting operations are non-blocking. | |
""" | |
registry = HookRegistry.check_if_exists_or_initialize(module) | |
hook = LayerwiseCastingHook(storage_dtype, compute_dtype, non_blocking) | |
registry.register_hook(hook, _LAYERWISE_CASTING_HOOK) | |
def _is_layerwise_casting_active(module: torch.nn.Module) -> bool: | |
for submodule in module.modules(): | |
if ( | |
hasattr(submodule, "_diffusers_hook") | |
and submodule._diffusers_hook.get_hook(_LAYERWISE_CASTING_HOOK) is not None | |
): | |
return True | |
return False | |
def _disable_peft_input_autocast(module: torch.nn.Module) -> None: | |
if not _SHOULD_DISABLE_PEFT_INPUT_AUTOCAST: | |
return | |
for submodule in module.modules(): | |
if isinstance(submodule, BaseTunerLayer) and _is_layerwise_casting_active(submodule): | |
registry = HookRegistry.check_if_exists_or_initialize(submodule) | |
hook = PeftInputAutocastDisableHook() | |
registry.register_hook(hook, _PEFT_AUTOCAST_DISABLE_HOOK) | |