Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from typing import List | |
import torch | |
from ..utils import is_peft_version, logging, state_dict_all_zero | |
logger = logging.get_logger(__name__) | |
def swap_scale_shift(weight): | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
return new_weight | |
def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5): | |
# 1. get all state_dict_keys | |
all_keys = list(state_dict.keys()) | |
sgm_patterns = ["input_blocks", "middle_block", "output_blocks"] | |
not_sgm_patterns = ["down_blocks", "mid_block", "up_blocks"] | |
# check if state_dict contains both patterns | |
contains_sgm_patterns = False | |
contains_not_sgm_patterns = False | |
for key in all_keys: | |
if any(p in key for p in sgm_patterns): | |
contains_sgm_patterns = True | |
elif any(p in key for p in not_sgm_patterns): | |
contains_not_sgm_patterns = True | |
# if state_dict contains both patterns, remove sgm | |
# we can then return state_dict immediately | |
if contains_sgm_patterns and contains_not_sgm_patterns: | |
for key in all_keys: | |
if any(p in key for p in sgm_patterns): | |
state_dict.pop(key) | |
return state_dict | |
# 2. check if needs remapping, if not return original dict | |
is_in_sgm_format = False | |
for key in all_keys: | |
if any(p in key for p in sgm_patterns): | |
is_in_sgm_format = True | |
break | |
if not is_in_sgm_format: | |
return state_dict | |
# 3. Else remap from SGM patterns | |
new_state_dict = {} | |
inner_block_map = ["resnets", "attentions", "upsamplers"] | |
# Retrieves # of down, mid and up blocks | |
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set() | |
for layer in all_keys: | |
if "text" in layer: | |
new_state_dict[layer] = state_dict.pop(layer) | |
else: | |
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1]) | |
if sgm_patterns[0] in layer: | |
input_block_ids.add(layer_id) | |
elif sgm_patterns[1] in layer: | |
middle_block_ids.add(layer_id) | |
elif sgm_patterns[2] in layer: | |
output_block_ids.add(layer_id) | |
else: | |
raise ValueError(f"Checkpoint not supported because layer {layer} not supported.") | |
input_blocks = { | |
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key] | |
for layer_id in input_block_ids | |
} | |
middle_blocks = { | |
layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key] | |
for layer_id in middle_block_ids | |
} | |
output_blocks = { | |
layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key] | |
for layer_id in output_block_ids | |
} | |
# Rename keys accordingly | |
for i in input_block_ids: | |
block_id = (i - 1) // (unet_config.layers_per_block + 1) | |
layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1) | |
for key in input_blocks[i]: | |
inner_block_id = int(key.split(delimiter)[block_slice_pos]) | |
inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers" | |
inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0" | |
new_key = delimiter.join( | |
key.split(delimiter)[: block_slice_pos - 1] | |
+ [str(block_id), inner_block_key, inner_layers_in_block] | |
+ key.split(delimiter)[block_slice_pos + 1 :] | |
) | |
new_state_dict[new_key] = state_dict.pop(key) | |
for i in middle_block_ids: | |
key_part = None | |
if i == 0: | |
key_part = [inner_block_map[0], "0"] | |
elif i == 1: | |
key_part = [inner_block_map[1], "0"] | |
elif i == 2: | |
key_part = [inner_block_map[0], "1"] | |
else: | |
raise ValueError(f"Invalid middle block id {i}.") | |
for key in middle_blocks[i]: | |
new_key = delimiter.join( | |
key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:] | |
) | |
new_state_dict[new_key] = state_dict.pop(key) | |
for i in output_block_ids: | |
block_id = i // (unet_config.layers_per_block + 1) | |
layer_in_block_id = i % (unet_config.layers_per_block + 1) | |
for key in output_blocks[i]: | |
inner_block_id = int(key.split(delimiter)[block_slice_pos]) | |
inner_block_key = inner_block_map[inner_block_id] | |
inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0" | |
new_key = delimiter.join( | |
key.split(delimiter)[: block_slice_pos - 1] | |
+ [str(block_id), inner_block_key, inner_layers_in_block] | |
+ key.split(delimiter)[block_slice_pos + 1 :] | |
) | |
new_state_dict[new_key] = state_dict.pop(key) | |
if state_dict: | |
raise ValueError("At this point all state dict entries have to be converted.") | |
return new_state_dict | |
def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"): | |
""" | |
Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict. | |
Args: | |
state_dict (`dict`): The state dict to convert. | |
unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet". | |
text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to | |
"text_encoder". | |
Returns: | |
`tuple`: A tuple containing the converted state dict and a dictionary of alphas. | |
""" | |
unet_state_dict = {} | |
te_state_dict = {} | |
te2_state_dict = {} | |
network_alphas = {} | |
# Check for DoRA-enabled LoRAs. | |
dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict) | |
dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict) | |
dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict) | |
if dora_present_in_unet or dora_present_in_te or dora_present_in_te2: | |
if is_peft_version("<", "0.9.0"): | |
raise ValueError( | |
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`." | |
) | |
# Iterate over all LoRA weights. | |
all_lora_keys = list(state_dict.keys()) | |
for key in all_lora_keys: | |
if not key.endswith("lora_down.weight"): | |
continue | |
# Extract LoRA name. | |
lora_name = key.split(".")[0] | |
# Find corresponding up weight and alpha. | |
lora_name_up = lora_name + ".lora_up.weight" | |
lora_name_alpha = lora_name + ".alpha" | |
# Handle U-Net LoRAs. | |
if lora_name.startswith("lora_unet_"): | |
diffusers_name = _convert_unet_lora_key(key) | |
# Store down and up weights. | |
unet_state_dict[diffusers_name] = state_dict.pop(key) | |
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
# Store DoRA scale if present. | |
if dora_present_in_unet: | |
dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down." | |
unet_state_dict[diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")] = ( | |
state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
) | |
# Handle text encoder LoRAs. | |
elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")): | |
diffusers_name = _convert_text_encoder_lora_key(key, lora_name) | |
# Store down and up weights for te or te2. | |
if lora_name.startswith(("lora_te_", "lora_te1_")): | |
te_state_dict[diffusers_name] = state_dict.pop(key) | |
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
else: | |
te2_state_dict[diffusers_name] = state_dict.pop(key) | |
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up) | |
# Store DoRA scale if present. | |
if dora_present_in_te or dora_present_in_te2: | |
dora_scale_key_to_replace_te = ( | |
"_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer." | |
) | |
if lora_name.startswith(("lora_te_", "lora_te1_")): | |
te_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( | |
state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
) | |
elif lora_name.startswith("lora_te2_"): | |
te2_state_dict[diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")] = ( | |
state_dict.pop(key.replace("lora_down.weight", "dora_scale")) | |
) | |
# Store alpha if present. | |
if lora_name_alpha in state_dict: | |
alpha = state_dict.pop(lora_name_alpha).item() | |
network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha)) | |
# Check if any keys remain. | |
if len(state_dict) > 0: | |
raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}") | |
logger.info("Non-diffusers checkpoint detected.") | |
# Construct final state dict. | |
unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()} | |
te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()} | |
te2_state_dict = ( | |
{f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()} | |
if len(te2_state_dict) > 0 | |
else None | |
) | |
if te2_state_dict is not None: | |
te_state_dict.update(te2_state_dict) | |
new_state_dict = {**unet_state_dict, **te_state_dict} | |
return new_state_dict, network_alphas | |
def _convert_unet_lora_key(key): | |
""" | |
Converts a U-Net LoRA key to a Diffusers compatible key. | |
""" | |
diffusers_name = key.replace("lora_unet_", "").replace("_", ".") | |
# Replace common U-Net naming patterns. | |
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks") | |
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks") | |
diffusers_name = diffusers_name.replace("middle.block", "mid_block") | |
diffusers_name = diffusers_name.replace("mid.block", "mid_block") | |
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks") | |
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks") | |
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks") | |
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora") | |
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora") | |
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora") | |
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora") | |
diffusers_name = diffusers_name.replace("proj.in", "proj_in") | |
diffusers_name = diffusers_name.replace("proj.out", "proj_out") | |
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj") | |
# SDXL specific conversions. | |
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name: | |
pattern = r"\.\d+(?=\D*$)" | |
diffusers_name = re.sub(pattern, "", diffusers_name, count=1) | |
if ".in." in diffusers_name: | |
diffusers_name = diffusers_name.replace("in.layers.2", "conv1") | |
if ".out." in diffusers_name: | |
diffusers_name = diffusers_name.replace("out.layers.3", "conv2") | |
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name: | |
diffusers_name = diffusers_name.replace("op", "conv") | |
if "skip" in diffusers_name: | |
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut") | |
# LyCORIS specific conversions. | |
if "time.emb.proj" in diffusers_name: | |
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj") | |
if "conv.shortcut" in diffusers_name: | |
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut") | |
# General conversions. | |
if "transformer_blocks" in diffusers_name: | |
if "attn1" in diffusers_name or "attn2" in diffusers_name: | |
diffusers_name = diffusers_name.replace("attn1", "attn1.processor") | |
diffusers_name = diffusers_name.replace("attn2", "attn2.processor") | |
elif "ff" in diffusers_name: | |
pass | |
elif any(key in diffusers_name for key in ("proj_in", "proj_out")): | |
pass | |
else: | |
pass | |
return diffusers_name | |
def _convert_text_encoder_lora_key(key, lora_name): | |
""" | |
Converts a text encoder LoRA key to a Diffusers compatible key. | |
""" | |
if lora_name.startswith(("lora_te_", "lora_te1_")): | |
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_" | |
else: | |
key_to_replace = "lora_te2_" | |
diffusers_name = key.replace(key_to_replace, "").replace("_", ".") | |
diffusers_name = diffusers_name.replace("text.model", "text_model") | |
diffusers_name = diffusers_name.replace("self.attn", "self_attn") | |
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora") | |
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora") | |
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora") | |
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora") | |
diffusers_name = diffusers_name.replace("text.projection", "text_projection") | |
if "self_attn" in diffusers_name or "text_projection" in diffusers_name: | |
pass | |
elif "mlp" in diffusers_name: | |
# Be aware that this is the new diffusers convention and the rest of the code might | |
# not utilize it yet. | |
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.") | |
return diffusers_name | |
def _get_alpha_name(lora_name_alpha, diffusers_name, alpha): | |
""" | |
Gets the correct alpha name for the Diffusers model. | |
""" | |
if lora_name_alpha.startswith("lora_unet_"): | |
prefix = "unet." | |
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")): | |
prefix = "text_encoder." | |
else: | |
prefix = "text_encoder_2." | |
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha" | |
return {new_name: alpha} | |
# The utilities under `_convert_kohya_flux_lora_to_diffusers()` | |
# are adapted from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py | |
def _convert_kohya_flux_lora_to_diffusers(state_dict): | |
def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key): | |
if sds_key + ".lora_down.weight" not in sds_sd: | |
return | |
down_weight = sds_sd.pop(sds_key + ".lora_down.weight") | |
# scale weight by alpha and dim | |
rank = down_weight.shape[0] | |
default_alpha = torch.tensor(rank, dtype=down_weight.dtype, device=down_weight.device, requires_grad=False) | |
alpha = sds_sd.pop(sds_key + ".alpha", default_alpha).item() # alpha is scalar | |
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here | |
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2 | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down | |
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up | |
def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None): | |
if sds_key + ".lora_down.weight" not in sds_sd: | |
return | |
down_weight = sds_sd.pop(sds_key + ".lora_down.weight") | |
up_weight = sds_sd.pop(sds_key + ".lora_up.weight") | |
sd_lora_rank = down_weight.shape[0] | |
# scale weight by alpha and dim | |
default_alpha = torch.tensor( | |
sd_lora_rank, dtype=down_weight.dtype, device=down_weight.device, requires_grad=False | |
) | |
alpha = sds_sd.pop(sds_key + ".alpha", default_alpha) | |
scale = alpha / sd_lora_rank | |
# calculate scale_down and scale_up | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
down_weight = down_weight * scale_down | |
up_weight = up_weight * scale_up | |
# calculate dims if not provided | |
num_splits = len(ait_keys) | |
if dims is None: | |
dims = [up_weight.shape[0] // num_splits] * num_splits | |
else: | |
assert sum(dims) == up_weight.shape[0] | |
# check upweight is sparse or not | |
is_sparse = False | |
if sd_lora_rank % num_splits == 0: | |
ait_rank = sd_lora_rank // num_splits | |
is_sparse = True | |
i = 0 | |
for j in range(len(dims)): | |
for k in range(len(dims)): | |
if j == k: | |
continue | |
is_sparse = is_sparse and torch.all( | |
up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0 | |
) | |
i += dims[j] | |
if is_sparse: | |
logger.info(f"weight is sparse: {sds_key}") | |
# make ai-toolkit weight | |
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] | |
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] | |
if not is_sparse: | |
# down_weight is copied to each split | |
ait_sd.update(dict.fromkeys(ait_down_keys, down_weight)) | |
# up_weight is split to each split | |
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416 | |
else: | |
# down_weight is chunked to each split | |
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # noqa: C416 | |
# up_weight is sparse: only non-zero values are copied to each split | |
i = 0 | |
for j in range(len(dims)): | |
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous() | |
i += dims[j] | |
def _convert_sd_scripts_to_ai_toolkit(sds_sd): | |
ait_sd = {} | |
for i in range(19): | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_attn_proj", | |
f"transformer.transformer_blocks.{i}.attn.to_out.0", | |
) | |
_convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.to_q", | |
f"transformer.transformer_blocks.{i}.attn.to_k", | |
f"transformer.transformer_blocks.{i}.attn.to_v", | |
], | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_mlp_0", | |
f"transformer.transformer_blocks.{i}.ff.net.0.proj", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_mlp_2", | |
f"transformer.transformer_blocks.{i}.ff.net.2", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_img_mod_lin", | |
f"transformer.transformer_blocks.{i}.norm1.linear", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_attn_proj", | |
f"transformer.transformer_blocks.{i}.attn.to_add_out", | |
) | |
_convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_attn_qkv", | |
[ | |
f"transformer.transformer_blocks.{i}.attn.add_q_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_k_proj", | |
f"transformer.transformer_blocks.{i}.attn.add_v_proj", | |
], | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_mlp_0", | |
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_mlp_2", | |
f"transformer.transformer_blocks.{i}.ff_context.net.2", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_double_blocks_{i}_txt_mod_lin", | |
f"transformer.transformer_blocks.{i}.norm1_context.linear", | |
) | |
for i in range(38): | |
_convert_to_ai_toolkit_cat( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_single_blocks_{i}_linear1", | |
[ | |
f"transformer.single_transformer_blocks.{i}.attn.to_q", | |
f"transformer.single_transformer_blocks.{i}.attn.to_k", | |
f"transformer.single_transformer_blocks.{i}.attn.to_v", | |
f"transformer.single_transformer_blocks.{i}.proj_mlp", | |
], | |
dims=[3072, 3072, 3072, 12288], | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_single_blocks_{i}_linear2", | |
f"transformer.single_transformer_blocks.{i}.proj_out", | |
) | |
_convert_to_ai_toolkit( | |
sds_sd, | |
ait_sd, | |
f"lora_unet_single_blocks_{i}_modulation_lin", | |
f"transformer.single_transformer_blocks.{i}.norm.linear", | |
) | |
# TODO: alphas. | |
def assign_remaining_weights(assignments, source): | |
for lora_key in ["lora_A", "lora_B"]: | |
orig_lora_key = "lora_down" if lora_key == "lora_A" else "lora_up" | |
for target_fmt, source_fmt, transform in assignments: | |
target_key = target_fmt.format(lora_key=lora_key) | |
source_key = source_fmt.format(orig_lora_key=orig_lora_key) | |
value = source.pop(source_key) | |
if transform: | |
value = transform(value) | |
ait_sd[target_key] = value | |
if any("guidance_in" in k for k in sds_sd): | |
assign_remaining_weights( | |
[ | |
( | |
"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight", | |
"lora_unet_guidance_in_in_layer.{orig_lora_key}.weight", | |
None, | |
), | |
( | |
"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight", | |
"lora_unet_guidance_in_out_layer.{orig_lora_key}.weight", | |
None, | |
), | |
], | |
sds_sd, | |
) | |
if any("img_in" in k for k in sds_sd): | |
assign_remaining_weights( | |
[ | |
("x_embedder.{lora_key}.weight", "lora_unet_img_in.{orig_lora_key}.weight", None), | |
], | |
sds_sd, | |
) | |
if any("txt_in" in k for k in sds_sd): | |
assign_remaining_weights( | |
[ | |
("context_embedder.{lora_key}.weight", "lora_unet_txt_in.{orig_lora_key}.weight", None), | |
], | |
sds_sd, | |
) | |
if any("time_in" in k for k in sds_sd): | |
assign_remaining_weights( | |
[ | |
( | |
"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight", | |
"lora_unet_time_in_in_layer.{orig_lora_key}.weight", | |
None, | |
), | |
( | |
"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight", | |
"lora_unet_time_in_out_layer.{orig_lora_key}.weight", | |
None, | |
), | |
], | |
sds_sd, | |
) | |
if any("vector_in" in k for k in sds_sd): | |
assign_remaining_weights( | |
[ | |
( | |
"time_text_embed.text_embedder.linear_1.{lora_key}.weight", | |
"lora_unet_vector_in_in_layer.{orig_lora_key}.weight", | |
None, | |
), | |
( | |
"time_text_embed.text_embedder.linear_2.{lora_key}.weight", | |
"lora_unet_vector_in_out_layer.{orig_lora_key}.weight", | |
None, | |
), | |
], | |
sds_sd, | |
) | |
if any("final_layer" in k for k in sds_sd): | |
# Notice the swap in processing for "final_layer". | |
assign_remaining_weights( | |
[ | |
( | |
"norm_out.linear.{lora_key}.weight", | |
"lora_unet_final_layer_adaLN_modulation_1.{orig_lora_key}.weight", | |
swap_scale_shift, | |
), | |
("proj_out.{lora_key}.weight", "lora_unet_final_layer_linear.{orig_lora_key}.weight", None), | |
], | |
sds_sd, | |
) | |
remaining_keys = list(sds_sd.keys()) | |
te_state_dict = {} | |
if remaining_keys: | |
if not all(k.startswith(("lora_te", "lora_te1")) for k in remaining_keys): | |
raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}") | |
for key in remaining_keys: | |
if not key.endswith("lora_down.weight"): | |
continue | |
lora_name = key.split(".")[0] | |
lora_name_up = f"{lora_name}.lora_up.weight" | |
lora_name_alpha = f"{lora_name}.alpha" | |
diffusers_name = _convert_text_encoder_lora_key(key, lora_name) | |
if lora_name.startswith(("lora_te_", "lora_te1_")): | |
down_weight = sds_sd.pop(key) | |
sd_lora_rank = down_weight.shape[0] | |
te_state_dict[diffusers_name] = down_weight | |
te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up) | |
if lora_name_alpha in sds_sd: | |
alpha = sds_sd.pop(lora_name_alpha).item() | |
scale = alpha / sd_lora_rank | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
te_state_dict[diffusers_name] *= scale_down | |
te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up | |
if len(sds_sd) > 0: | |
logger.warning(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}") | |
if te_state_dict: | |
te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()} | |
new_state_dict = {**ait_sd, **te_state_dict} | |
return new_state_dict | |
def _convert_mixture_state_dict_to_diffusers(state_dict): | |
new_state_dict = {} | |
def _convert(original_key, diffusers_key, state_dict, new_state_dict): | |
down_key = f"{original_key}.lora_down.weight" | |
down_weight = state_dict.pop(down_key) | |
lora_rank = down_weight.shape[0] | |
up_weight_key = f"{original_key}.lora_up.weight" | |
up_weight = state_dict.pop(up_weight_key) | |
alpha_key = f"{original_key}.alpha" | |
alpha = state_dict.pop(alpha_key) | |
# scale weight by alpha and dim | |
scale = alpha / lora_rank | |
# calculate scale_down and scale_up | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
down_weight = down_weight * scale_down | |
up_weight = up_weight * scale_up | |
diffusers_down_key = f"{diffusers_key}.lora_A.weight" | |
new_state_dict[diffusers_down_key] = down_weight | |
new_state_dict[diffusers_down_key.replace(".lora_A.", ".lora_B.")] = up_weight | |
all_unique_keys = { | |
k.replace(".lora_down.weight", "").replace(".lora_up.weight", "").replace(".alpha", "") | |
for k in state_dict | |
if not k.startswith(("lora_unet_")) | |
} | |
assert all(k.startswith(("lora_transformer_", "lora_te1_")) for k in all_unique_keys), f"{all_unique_keys=}" | |
has_te_keys = False | |
for k in all_unique_keys: | |
if k.startswith("lora_transformer_single_transformer_blocks_"): | |
i = int(k.split("lora_transformer_single_transformer_blocks_")[-1].split("_")[0]) | |
diffusers_key = f"single_transformer_blocks.{i}" | |
elif k.startswith("lora_transformer_transformer_blocks_"): | |
i = int(k.split("lora_transformer_transformer_blocks_")[-1].split("_")[0]) | |
diffusers_key = f"transformer_blocks.{i}" | |
elif k.startswith("lora_te1_"): | |
has_te_keys = True | |
continue | |
elif k.startswith("lora_transformer_context_embedder"): | |
diffusers_key = "context_embedder" | |
elif k.startswith("lora_transformer_norm_out_linear"): | |
diffusers_key = "norm_out.linear" | |
elif k.startswith("lora_transformer_proj_out"): | |
diffusers_key = "proj_out" | |
elif k.startswith("lora_transformer_x_embedder"): | |
diffusers_key = "x_embedder" | |
elif k.startswith("lora_transformer_time_text_embed_guidance_embedder_linear_"): | |
i = int(k.split("lora_transformer_time_text_embed_guidance_embedder_linear_")[-1]) | |
diffusers_key = f"time_text_embed.guidance_embedder.linear_{i}" | |
elif k.startswith("lora_transformer_time_text_embed_text_embedder_linear_"): | |
i = int(k.split("lora_transformer_time_text_embed_text_embedder_linear_")[-1]) | |
diffusers_key = f"time_text_embed.text_embedder.linear_{i}" | |
elif k.startswith("lora_transformer_time_text_embed_timestep_embedder_linear_"): | |
i = int(k.split("lora_transformer_time_text_embed_timestep_embedder_linear_")[-1]) | |
diffusers_key = f"time_text_embed.timestep_embedder.linear_{i}" | |
else: | |
raise NotImplementedError(f"Handling for key ({k}) is not implemented.") | |
if "attn_" in k: | |
if "_to_out_0" in k: | |
diffusers_key += ".attn.to_out.0" | |
elif "_to_add_out" in k: | |
diffusers_key += ".attn.to_add_out" | |
elif any(qkv in k for qkv in ["to_q", "to_k", "to_v"]): | |
remaining = k.split("attn_")[-1] | |
diffusers_key += f".attn.{remaining}" | |
elif any(add_qkv in k for add_qkv in ["add_q_proj", "add_k_proj", "add_v_proj"]): | |
remaining = k.split("attn_")[-1] | |
diffusers_key += f".attn.{remaining}" | |
_convert(k, diffusers_key, state_dict, new_state_dict) | |
if has_te_keys: | |
layer_pattern = re.compile(r"lora_te1_text_model_encoder_layers_(\d+)") | |
attn_mapping = { | |
"q_proj": ".self_attn.q_proj", | |
"k_proj": ".self_attn.k_proj", | |
"v_proj": ".self_attn.v_proj", | |
"out_proj": ".self_attn.out_proj", | |
} | |
mlp_mapping = {"fc1": ".mlp.fc1", "fc2": ".mlp.fc2"} | |
for k in all_unique_keys: | |
if not k.startswith("lora_te1_"): | |
continue | |
match = layer_pattern.search(k) | |
if not match: | |
continue | |
i = int(match.group(1)) | |
diffusers_key = f"text_model.encoder.layers.{i}" | |
if "attn" in k: | |
for key_fragment, suffix in attn_mapping.items(): | |
if key_fragment in k: | |
diffusers_key += suffix | |
break | |
elif "mlp" in k: | |
for key_fragment, suffix in mlp_mapping.items(): | |
if key_fragment in k: | |
diffusers_key += suffix | |
break | |
_convert(k, diffusers_key, state_dict, new_state_dict) | |
remaining_all_unet = False | |
if state_dict: | |
remaining_all_unet = all(k.startswith("lora_unet_") for k in state_dict) | |
if remaining_all_unet: | |
keys = list(state_dict.keys()) | |
for k in keys: | |
state_dict.pop(k) | |
if len(state_dict) > 0: | |
raise ValueError( | |
f"Expected an empty state dict at this point but its has these keys which couldn't be parsed: {list(state_dict.keys())}." | |
) | |
transformer_state_dict = { | |
f"transformer.{k}": v for k, v in new_state_dict.items() if not k.startswith("text_model.") | |
} | |
te_state_dict = {f"text_encoder.{k}": v for k, v in new_state_dict.items() if k.startswith("text_model.")} | |
return {**transformer_state_dict, **te_state_dict} | |
# This is weird. | |
# https://huggingface.co/sayakpaul/different-lora-from-civitai/tree/main?show_file_info=sharp_detailed_foot.safetensors | |
# has both `peft` and non-peft state dict. | |
has_peft_state_dict = any(k.startswith("transformer.") for k in state_dict) | |
if has_peft_state_dict: | |
state_dict = {k: v for k, v in state_dict.items() if k.startswith("transformer.")} | |
return state_dict | |
# Another weird one. | |
has_mixture = any( | |
k.startswith("lora_transformer_") and ("lora_down" in k or "lora_up" in k or "alpha" in k) for k in state_dict | |
) | |
# ComfyUI. | |
if not has_mixture: | |
state_dict = {k.replace("diffusion_model.", "lora_unet_"): v for k, v in state_dict.items()} | |
state_dict = {k.replace("text_encoders.clip_l.transformer.", "lora_te_"): v for k, v in state_dict.items()} | |
has_position_embedding = any("position_embedding" in k for k in state_dict) | |
if has_position_embedding: | |
zero_status_pe = state_dict_all_zero(state_dict, "position_embedding") | |
if zero_status_pe: | |
logger.info( | |
"The `position_embedding` LoRA params are all zeros which make them ineffective. " | |
"So, we will purge them out of the current state dict to make loading possible." | |
) | |
else: | |
logger.info( | |
"The state_dict has position_embedding LoRA params and we currently do not support them. " | |
"Open an issue if you need this supported - https://github.com/huggingface/diffusers/issues/new." | |
) | |
state_dict = {k: v for k, v in state_dict.items() if "position_embedding" not in k} | |
has_t5xxl = any(k.startswith("text_encoders.t5xxl.transformer.") for k in state_dict) | |
if has_t5xxl: | |
zero_status_t5 = state_dict_all_zero(state_dict, "text_encoders.t5xxl") | |
if zero_status_t5: | |
logger.info( | |
"The `t5xxl` LoRA params are all zeros which make them ineffective. " | |
"So, we will purge them out of the current state dict to make loading possible." | |
) | |
else: | |
logger.info( | |
"T5-xxl keys found in the state dict, which are currently unsupported. We will filter them out." | |
"Open an issue if this is a problem - https://github.com/huggingface/diffusers/issues/new." | |
) | |
state_dict = {k: v for k, v in state_dict.items() if not k.startswith("text_encoders.t5xxl.transformer.")} | |
has_diffb = any("diff_b" in k and k.startswith(("lora_unet_", "lora_te_")) for k in state_dict) | |
if has_diffb: | |
zero_status_diff_b = state_dict_all_zero(state_dict, ".diff_b") | |
if zero_status_diff_b: | |
logger.info( | |
"The `diff_b` LoRA params are all zeros which make them ineffective. " | |
"So, we will purge them out of the current state dict to make loading possible." | |
) | |
else: | |
logger.info( | |
"`diff_b` keys found in the state dict which are currently unsupported. " | |
"So, we will filter out those keys. Open an issue if this is a problem - " | |
"https://github.com/huggingface/diffusers/issues/new." | |
) | |
state_dict = {k: v for k, v in state_dict.items() if ".diff_b" not in k} | |
has_norm_diff = any(".norm" in k and ".diff" in k for k in state_dict) | |
if has_norm_diff: | |
zero_status_diff = state_dict_all_zero(state_dict, ".diff") | |
if zero_status_diff: | |
logger.info( | |
"The `diff` LoRA params are all zeros which make them ineffective. " | |
"So, we will purge them out of the current state dict to make loading possible." | |
) | |
else: | |
logger.info( | |
"Normalization diff keys found in the state dict which are currently unsupported. " | |
"So, we will filter out those keys. Open an issue if this is a problem - " | |
"https://github.com/huggingface/diffusers/issues/new." | |
) | |
state_dict = {k: v for k, v in state_dict.items() if ".norm" not in k and ".diff" not in k} | |
limit_substrings = ["lora_down", "lora_up"] | |
if any("alpha" in k for k in state_dict): | |
limit_substrings.append("alpha") | |
state_dict = { | |
_custom_replace(k, limit_substrings): v | |
for k, v in state_dict.items() | |
if k.startswith(("lora_unet_", "lora_te_")) | |
} | |
if any("text_projection" in k for k in state_dict): | |
logger.info( | |
"`text_projection` keys found in the `state_dict` which are unexpected. " | |
"So, we will filter out those keys. Open an issue if this is a problem - " | |
"https://github.com/huggingface/diffusers/issues/new." | |
) | |
state_dict = {k: v for k, v in state_dict.items() if "text_projection" not in k} | |
if has_mixture: | |
return _convert_mixture_state_dict_to_diffusers(state_dict) | |
return _convert_sd_scripts_to_ai_toolkit(state_dict) | |
# Adapted from https://gist.github.com/Leommm-byte/6b331a1e9bd53271210b26543a7065d6 | |
# Some utilities were reused from | |
# https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py | |
def _convert_xlabs_flux_lora_to_diffusers(old_state_dict): | |
new_state_dict = {} | |
orig_keys = list(old_state_dict.keys()) | |
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None): | |
down_weight = sds_sd.pop(sds_key) | |
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight")) | |
# calculate dims if not provided | |
num_splits = len(ait_keys) | |
if dims is None: | |
dims = [up_weight.shape[0] // num_splits] * num_splits | |
else: | |
assert sum(dims) == up_weight.shape[0] | |
# make ai-toolkit weight | |
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys] | |
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys] | |
# down_weight is copied to each split | |
ait_sd.update(dict.fromkeys(ait_down_keys, down_weight)) | |
# up_weight is split to each split | |
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416 | |
for old_key in orig_keys: | |
# Handle double_blocks | |
if old_key.startswith(("diffusion_model.double_blocks", "double_blocks")): | |
block_num = re.search(r"double_blocks\.(\d+)", old_key).group(1) | |
new_key = f"transformer.transformer_blocks.{block_num}" | |
if "processor.proj_lora1" in old_key: | |
new_key += ".attn.to_out.0" | |
elif "processor.proj_lora2" in old_key: | |
new_key += ".attn.to_add_out" | |
# Handle text latents. | |
elif "processor.qkv_lora2" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj", | |
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj", | |
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj", | |
], | |
) | |
# continue | |
# Handle image latents. | |
elif "processor.qkv_lora1" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.transformer_blocks.{block_num}.attn.to_q", | |
f"transformer.transformer_blocks.{block_num}.attn.to_k", | |
f"transformer.transformer_blocks.{block_num}.attn.to_v", | |
], | |
) | |
# continue | |
if "down" in old_key: | |
new_key += ".lora_A.weight" | |
elif "up" in old_key: | |
new_key += ".lora_B.weight" | |
# Handle single_blocks | |
elif old_key.startswith(("diffusion_model.single_blocks", "single_blocks")): | |
block_num = re.search(r"single_blocks\.(\d+)", old_key).group(1) | |
new_key = f"transformer.single_transformer_blocks.{block_num}" | |
if "proj_lora" in old_key: | |
new_key += ".proj_out" | |
elif "qkv_lora" in old_key and "up" not in old_key: | |
handle_qkv( | |
old_state_dict, | |
new_state_dict, | |
old_key, | |
[ | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_q", | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_k", | |
f"transformer.single_transformer_blocks.{block_num}.attn.to_v", | |
], | |
) | |
if "down" in old_key: | |
new_key += ".lora_A.weight" | |
elif "up" in old_key: | |
new_key += ".lora_B.weight" | |
else: | |
# Handle other potential key patterns here | |
new_key = old_key | |
# Since we already handle qkv above. | |
if "qkv" not in old_key: | |
new_state_dict[new_key] = old_state_dict.pop(old_key) | |
if len(old_state_dict) > 0: | |
raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.") | |
return new_state_dict | |
def _custom_replace(key: str, substrings: List[str]) -> str: | |
# Replaces the "."s with "_"s upto the `substrings`. | |
# Example: | |
# lora_unet.foo.bar.lora_A.weight -> lora_unet_foo_bar.lora_A.weight | |
pattern = "(" + "|".join(re.escape(sub) for sub in substrings) + ")" | |
match = re.search(pattern, key) | |
if match: | |
start_sub = match.start() | |
if start_sub > 0 and key[start_sub - 1] == ".": | |
boundary = start_sub - 1 | |
else: | |
boundary = start_sub | |
left = key[:boundary].replace(".", "_") | |
right = key[boundary:] | |
return left + right | |
else: | |
return key.replace(".", "_") | |
def _convert_bfl_flux_control_lora_to_diffusers(original_state_dict): | |
converted_state_dict = {} | |
original_state_dict_keys = list(original_state_dict.keys()) | |
num_layers = 19 | |
num_single_layers = 38 | |
inner_dim = 3072 | |
mlp_ratio = 4.0 | |
for lora_key in ["lora_A", "lora_B"]: | |
## time_text_embed.timestep_embedder <- time_in | |
converted_state_dict[f"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight"] = ( | |
original_state_dict.pop(f"time_in.in_layer.{lora_key}.weight") | |
) | |
if f"time_in.in_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.timestep_embedder.linear_1.{lora_key}.bias"] = ( | |
original_state_dict.pop(f"time_in.in_layer.{lora_key}.bias") | |
) | |
converted_state_dict[f"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight"] = ( | |
original_state_dict.pop(f"time_in.out_layer.{lora_key}.weight") | |
) | |
if f"time_in.out_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.timestep_embedder.linear_2.{lora_key}.bias"] = ( | |
original_state_dict.pop(f"time_in.out_layer.{lora_key}.bias") | |
) | |
## time_text_embed.text_embedder <- vector_in | |
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.weight"] = original_state_dict.pop( | |
f"vector_in.in_layer.{lora_key}.weight" | |
) | |
if f"vector_in.in_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.bias"] = original_state_dict.pop( | |
f"vector_in.in_layer.{lora_key}.bias" | |
) | |
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.weight"] = original_state_dict.pop( | |
f"vector_in.out_layer.{lora_key}.weight" | |
) | |
if f"vector_in.out_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.bias"] = original_state_dict.pop( | |
f"vector_in.out_layer.{lora_key}.bias" | |
) | |
# guidance | |
has_guidance = any("guidance" in k for k in original_state_dict) | |
if has_guidance: | |
converted_state_dict[f"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight"] = ( | |
original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.weight") | |
) | |
if f"guidance_in.in_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.guidance_embedder.linear_1.{lora_key}.bias"] = ( | |
original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.bias") | |
) | |
converted_state_dict[f"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight"] = ( | |
original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.weight") | |
) | |
if f"guidance_in.out_layer.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"time_text_embed.guidance_embedder.linear_2.{lora_key}.bias"] = ( | |
original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.bias") | |
) | |
# context_embedder | |
converted_state_dict[f"context_embedder.{lora_key}.weight"] = original_state_dict.pop( | |
f"txt_in.{lora_key}.weight" | |
) | |
if f"txt_in.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"context_embedder.{lora_key}.bias"] = original_state_dict.pop( | |
f"txt_in.{lora_key}.bias" | |
) | |
# x_embedder | |
converted_state_dict[f"x_embedder.{lora_key}.weight"] = original_state_dict.pop(f"img_in.{lora_key}.weight") | |
if f"img_in.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"x_embedder.{lora_key}.bias"] = original_state_dict.pop(f"img_in.{lora_key}.bias") | |
# double transformer blocks | |
for i in range(num_layers): | |
block_prefix = f"transformer_blocks.{i}." | |
for lora_key in ["lora_A", "lora_B"]: | |
# norms | |
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mod.lin.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.img_mod.lin.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mod.lin.{lora_key}.bias" | |
) | |
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mod.lin.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias" | |
) | |
# Q, K, V | |
if lora_key == "lora_A": | |
sample_lora_weight = original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight") | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_lora_weight]) | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_lora_weight]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_lora_weight]) | |
context_lora_weight = original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight") | |
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat( | |
[context_lora_weight] | |
) | |
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat( | |
[context_lora_weight] | |
) | |
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat( | |
[context_lora_weight] | |
) | |
else: | |
sample_q, sample_k, sample_v = torch.chunk( | |
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight"), 3, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_q]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_k]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_v]) | |
context_q, context_k, context_v = torch.chunk( | |
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight"), 3, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat([context_q]) | |
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat([context_k]) | |
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat([context_v]) | |
if f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias" in original_state_dict_keys: | |
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk( | |
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([sample_q_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([sample_k_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([sample_v_bias]) | |
if f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias" in original_state_dict_keys: | |
context_q_bias, context_k_bias, context_v_bias = torch.chunk( | |
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias"), 3, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.bias"] = torch.cat([context_q_bias]) | |
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.bias"] = torch.cat([context_k_bias]) | |
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.bias"] = torch.cat([context_v_bias]) | |
# ff img_mlp | |
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mlp.0.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.img_mlp.0.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mlp.0.{lora_key}.bias" | |
) | |
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mlp.2.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.img_mlp.2.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_mlp.2.{lora_key}.bias" | |
) | |
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mlp.0.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias" | |
) | |
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mlp.2.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias" | |
) | |
# output projections. | |
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_attn.proj.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.img_attn.proj.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_attn.proj.{lora_key}.bias" | |
) | |
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_attn.proj.{lora_key}.weight" | |
) | |
if f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.bias"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias" | |
) | |
# qk_norm | |
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_attn.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.img_attn.norm.key_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_attn.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop( | |
f"double_blocks.{i}.txt_attn.norm.key_norm.scale" | |
) | |
# single transformer blocks | |
for i in range(num_single_layers): | |
block_prefix = f"single_transformer_blocks.{i}." | |
for lora_key in ["lora_A", "lora_B"]: | |
# norm.linear <- single_blocks.0.modulation.lin | |
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.weight"] = original_state_dict.pop( | |
f"single_blocks.{i}.modulation.lin.{lora_key}.weight" | |
) | |
if f"single_blocks.{i}.modulation.lin.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.bias"] = original_state_dict.pop( | |
f"single_blocks.{i}.modulation.lin.{lora_key}.bias" | |
) | |
# Q, K, V, mlp | |
mlp_hidden_dim = int(inner_dim * mlp_ratio) | |
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim) | |
if lora_key == "lora_A": | |
lora_weight = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight") | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([lora_weight]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([lora_weight]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([lora_weight]) | |
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([lora_weight]) | |
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys: | |
lora_bias = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias") | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([lora_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([lora_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([lora_bias]) | |
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([lora_bias]) | |
else: | |
q, k, v, mlp = torch.split( | |
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight"), split_size, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([q]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([k]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([v]) | |
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([mlp]) | |
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys: | |
q_bias, k_bias, v_bias, mlp_bias = torch.split( | |
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias"), split_size, dim=0 | |
) | |
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([q_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([k_bias]) | |
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([v_bias]) | |
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([mlp_bias]) | |
# output projections. | |
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.weight"] = original_state_dict.pop( | |
f"single_blocks.{i}.linear2.{lora_key}.weight" | |
) | |
if f"single_blocks.{i}.linear2.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.bias"] = original_state_dict.pop( | |
f"single_blocks.{i}.linear2.{lora_key}.bias" | |
) | |
# qk norm | |
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop( | |
f"single_blocks.{i}.norm.query_norm.scale" | |
) | |
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop( | |
f"single_blocks.{i}.norm.key_norm.scale" | |
) | |
for lora_key in ["lora_A", "lora_B"]: | |
converted_state_dict[f"proj_out.{lora_key}.weight"] = original_state_dict.pop( | |
f"final_layer.linear.{lora_key}.weight" | |
) | |
if f"final_layer.linear.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"proj_out.{lora_key}.bias"] = original_state_dict.pop( | |
f"final_layer.linear.{lora_key}.bias" | |
) | |
converted_state_dict[f"norm_out.linear.{lora_key}.weight"] = swap_scale_shift( | |
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.weight") | |
) | |
if f"final_layer.adaLN_modulation.1.{lora_key}.bias" in original_state_dict_keys: | |
converted_state_dict[f"norm_out.linear.{lora_key}.bias"] = swap_scale_shift( | |
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.bias") | |
) | |
if len(original_state_dict) > 0: | |
raise ValueError(f"`original_state_dict` should be empty at this point but has {original_state_dict.keys()=}.") | |
for key in list(converted_state_dict.keys()): | |
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key) | |
return converted_state_dict | |
def _convert_hunyuan_video_lora_to_diffusers(original_state_dict): | |
converted_state_dict = {k: original_state_dict.pop(k) for k in list(original_state_dict.keys())} | |
def remap_norm_scale_shift_(key, state_dict): | |
weight = state_dict.pop(key) | |
shift, scale = weight.chunk(2, dim=0) | |
new_weight = torch.cat([scale, shift], dim=0) | |
state_dict[key.replace("final_layer.adaLN_modulation.1", "norm_out.linear")] = new_weight | |
def remap_txt_in_(key, state_dict): | |
def rename_key(key): | |
new_key = key.replace("individual_token_refiner.blocks", "token_refiner.refiner_blocks") | |
new_key = new_key.replace("adaLN_modulation.1", "norm_out.linear") | |
new_key = new_key.replace("txt_in", "context_embedder") | |
new_key = new_key.replace("t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1") | |
new_key = new_key.replace("t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2") | |
new_key = new_key.replace("c_embedder", "time_text_embed.text_embedder") | |
new_key = new_key.replace("mlp", "ff") | |
return new_key | |
if "self_attn_qkv" in key: | |
weight = state_dict.pop(key) | |
to_q, to_k, to_v = weight.chunk(3, dim=0) | |
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_q"))] = to_q | |
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_k"))] = to_k | |
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_v"))] = to_v | |
else: | |
state_dict[rename_key(key)] = state_dict.pop(key) | |
def remap_img_attn_qkv_(key, state_dict): | |
weight = state_dict.pop(key) | |
if "lora_A" in key: | |
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = weight | |
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = weight | |
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = weight | |
else: | |
to_q, to_k, to_v = weight.chunk(3, dim=0) | |
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = to_q | |
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = to_k | |
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = to_v | |
def remap_txt_attn_qkv_(key, state_dict): | |
weight = state_dict.pop(key) | |
if "lora_A" in key: | |
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = weight | |
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = weight | |
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = weight | |
else: | |
to_q, to_k, to_v = weight.chunk(3, dim=0) | |
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = to_q | |
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = to_k | |
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = to_v | |
def remap_single_transformer_blocks_(key, state_dict): | |
hidden_size = 3072 | |
if "linear1.lora_A.weight" in key or "linear1.lora_B.weight" in key: | |
linear1_weight = state_dict.pop(key) | |
if "lora_A" in key: | |
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix( | |
".linear1.lora_A.weight" | |
) | |
state_dict[f"{new_key}.attn.to_q.lora_A.weight"] = linear1_weight | |
state_dict[f"{new_key}.attn.to_k.lora_A.weight"] = linear1_weight | |
state_dict[f"{new_key}.attn.to_v.lora_A.weight"] = linear1_weight | |
state_dict[f"{new_key}.proj_mlp.lora_A.weight"] = linear1_weight | |
else: | |
split_size = (hidden_size, hidden_size, hidden_size, linear1_weight.size(0) - 3 * hidden_size) | |
q, k, v, mlp = torch.split(linear1_weight, split_size, dim=0) | |
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix( | |
".linear1.lora_B.weight" | |
) | |
state_dict[f"{new_key}.attn.to_q.lora_B.weight"] = q | |
state_dict[f"{new_key}.attn.to_k.lora_B.weight"] = k | |
state_dict[f"{new_key}.attn.to_v.lora_B.weight"] = v | |
state_dict[f"{new_key}.proj_mlp.lora_B.weight"] = mlp | |
elif "linear1.lora_A.bias" in key or "linear1.lora_B.bias" in key: | |
linear1_bias = state_dict.pop(key) | |
if "lora_A" in key: | |
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix( | |
".linear1.lora_A.bias" | |
) | |
state_dict[f"{new_key}.attn.to_q.lora_A.bias"] = linear1_bias | |
state_dict[f"{new_key}.attn.to_k.lora_A.bias"] = linear1_bias | |
state_dict[f"{new_key}.attn.to_v.lora_A.bias"] = linear1_bias | |
state_dict[f"{new_key}.proj_mlp.lora_A.bias"] = linear1_bias | |
else: | |
split_size = (hidden_size, hidden_size, hidden_size, linear1_bias.size(0) - 3 * hidden_size) | |
q_bias, k_bias, v_bias, mlp_bias = torch.split(linear1_bias, split_size, dim=0) | |
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix( | |
".linear1.lora_B.bias" | |
) | |
state_dict[f"{new_key}.attn.to_q.lora_B.bias"] = q_bias | |
state_dict[f"{new_key}.attn.to_k.lora_B.bias"] = k_bias | |
state_dict[f"{new_key}.attn.to_v.lora_B.bias"] = v_bias | |
state_dict[f"{new_key}.proj_mlp.lora_B.bias"] = mlp_bias | |
else: | |
new_key = key.replace("single_blocks", "single_transformer_blocks") | |
new_key = new_key.replace("linear2", "proj_out") | |
new_key = new_key.replace("q_norm", "attn.norm_q") | |
new_key = new_key.replace("k_norm", "attn.norm_k") | |
state_dict[new_key] = state_dict.pop(key) | |
TRANSFORMER_KEYS_RENAME_DICT = { | |
"img_in": "x_embedder", | |
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1", | |
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2", | |
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1", | |
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2", | |
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1", | |
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2", | |
"double_blocks": "transformer_blocks", | |
"img_attn_q_norm": "attn.norm_q", | |
"img_attn_k_norm": "attn.norm_k", | |
"img_attn_proj": "attn.to_out.0", | |
"txt_attn_q_norm": "attn.norm_added_q", | |
"txt_attn_k_norm": "attn.norm_added_k", | |
"txt_attn_proj": "attn.to_add_out", | |
"img_mod.linear": "norm1.linear", | |
"img_norm1": "norm1.norm", | |
"img_norm2": "norm2", | |
"img_mlp": "ff", | |
"txt_mod.linear": "norm1_context.linear", | |
"txt_norm1": "norm1.norm", | |
"txt_norm2": "norm2_context", | |
"txt_mlp": "ff_context", | |
"self_attn_proj": "attn.to_out.0", | |
"modulation.linear": "norm.linear", | |
"pre_norm": "norm.norm", | |
"final_layer.norm_final": "norm_out.norm", | |
"final_layer.linear": "proj_out", | |
"fc1": "net.0.proj", | |
"fc2": "net.2", | |
"input_embedder": "proj_in", | |
} | |
TRANSFORMER_SPECIAL_KEYS_REMAP = { | |
"txt_in": remap_txt_in_, | |
"img_attn_qkv": remap_img_attn_qkv_, | |
"txt_attn_qkv": remap_txt_attn_qkv_, | |
"single_blocks": remap_single_transformer_blocks_, | |
"final_layer.adaLN_modulation.1": remap_norm_scale_shift_, | |
} | |
# Some folks attempt to make their state dict compatible with diffusers by adding "transformer." prefix to all keys | |
# and use their custom code. To make sure both "original" and "attempted diffusers" loras work as expected, we make | |
# sure that both follow the same initial format by stripping off the "transformer." prefix. | |
for key in list(converted_state_dict.keys()): | |
if key.startswith("transformer."): | |
converted_state_dict[key[len("transformer.") :]] = converted_state_dict.pop(key) | |
if key.startswith("diffusion_model."): | |
converted_state_dict[key[len("diffusion_model.") :]] = converted_state_dict.pop(key) | |
# Rename and remap the state dict keys | |
for key in list(converted_state_dict.keys()): | |
new_key = key[:] | |
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items(): | |
new_key = new_key.replace(replace_key, rename_key) | |
converted_state_dict[new_key] = converted_state_dict.pop(key) | |
for key in list(converted_state_dict.keys()): | |
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items(): | |
if special_key not in key: | |
continue | |
handler_fn_inplace(key, converted_state_dict) | |
# Add back the "transformer." prefix | |
for key in list(converted_state_dict.keys()): | |
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key) | |
return converted_state_dict | |
def _convert_non_diffusers_lumina2_lora_to_diffusers(state_dict): | |
# Remove "diffusion_model." prefix from keys. | |
state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()} | |
converted_state_dict = {} | |
def get_num_layers(keys, pattern): | |
layers = set() | |
for key in keys: | |
match = re.search(pattern, key) | |
if match: | |
layers.add(int(match.group(1))) | |
return len(layers) | |
def process_block(prefix, index, convert_norm): | |
# Process attention qkv: pop lora_A and lora_B weights. | |
lora_down = state_dict.pop(f"{prefix}.{index}.attention.qkv.lora_A.weight") | |
lora_up = state_dict.pop(f"{prefix}.{index}.attention.qkv.lora_B.weight") | |
for attn_key in ["to_q", "to_k", "to_v"]: | |
converted_state_dict[f"{prefix}.{index}.attn.{attn_key}.lora_A.weight"] = lora_down | |
for attn_key, weight in zip(["to_q", "to_k", "to_v"], torch.split(lora_up, [2304, 768, 768], dim=0)): | |
converted_state_dict[f"{prefix}.{index}.attn.{attn_key}.lora_B.weight"] = weight | |
# Process attention out weights. | |
converted_state_dict[f"{prefix}.{index}.attn.to_out.0.lora_A.weight"] = state_dict.pop( | |
f"{prefix}.{index}.attention.out.lora_A.weight" | |
) | |
converted_state_dict[f"{prefix}.{index}.attn.to_out.0.lora_B.weight"] = state_dict.pop( | |
f"{prefix}.{index}.attention.out.lora_B.weight" | |
) | |
# Process feed-forward weights for layers 1, 2, and 3. | |
for layer in range(1, 4): | |
converted_state_dict[f"{prefix}.{index}.feed_forward.linear_{layer}.lora_A.weight"] = state_dict.pop( | |
f"{prefix}.{index}.feed_forward.w{layer}.lora_A.weight" | |
) | |
converted_state_dict[f"{prefix}.{index}.feed_forward.linear_{layer}.lora_B.weight"] = state_dict.pop( | |
f"{prefix}.{index}.feed_forward.w{layer}.lora_B.weight" | |
) | |
if convert_norm: | |
converted_state_dict[f"{prefix}.{index}.norm1.linear.lora_A.weight"] = state_dict.pop( | |
f"{prefix}.{index}.adaLN_modulation.1.lora_A.weight" | |
) | |
converted_state_dict[f"{prefix}.{index}.norm1.linear.lora_B.weight"] = state_dict.pop( | |
f"{prefix}.{index}.adaLN_modulation.1.lora_B.weight" | |
) | |
noise_refiner_pattern = r"noise_refiner\.(\d+)\." | |
num_noise_refiner_layers = get_num_layers(state_dict.keys(), noise_refiner_pattern) | |
for i in range(num_noise_refiner_layers): | |
process_block("noise_refiner", i, convert_norm=True) | |
context_refiner_pattern = r"context_refiner\.(\d+)\." | |
num_context_refiner_layers = get_num_layers(state_dict.keys(), context_refiner_pattern) | |
for i in range(num_context_refiner_layers): | |
process_block("context_refiner", i, convert_norm=False) | |
core_transformer_pattern = r"layers\.(\d+)\." | |
num_core_transformer_layers = get_num_layers(state_dict.keys(), core_transformer_pattern) | |
for i in range(num_core_transformer_layers): | |
process_block("layers", i, convert_norm=True) | |
if len(state_dict) > 0: | |
raise ValueError(f"`state_dict` should be empty at this point but has {state_dict.keys()=}") | |
for key in list(converted_state_dict.keys()): | |
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key) | |
return converted_state_dict | |
def _convert_non_diffusers_wan_lora_to_diffusers(state_dict): | |
converted_state_dict = {} | |
original_state_dict = {k[len("diffusion_model.") :]: v for k, v in state_dict.items()} | |
num_blocks = len({k.split("blocks.")[1].split(".")[0] for k in original_state_dict if "blocks." in k}) | |
is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict) | |
lora_down_key = "lora_A" if any("lora_A" in k for k in original_state_dict) else "lora_down" | |
lora_up_key = "lora_B" if any("lora_B" in k for k in original_state_dict) else "lora_up" | |
diff_keys = [k for k in original_state_dict if k.endswith((".diff_b", ".diff"))] | |
if diff_keys: | |
for diff_k in diff_keys: | |
param = original_state_dict[diff_k] | |
all_zero = torch.all(param == 0).item() | |
if all_zero: | |
logger.debug(f"Removed {diff_k} key from the state dict as it's all zeros.") | |
original_state_dict.pop(diff_k) | |
# For the `diff_b` keys, we treat them as lora_bias. | |
# https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraConfig.lora_bias | |
for i in range(num_blocks): | |
# Self-attention | |
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): | |
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = original_state_dict.pop( | |
f"blocks.{i}.self_attn.{o}.{lora_down_key}.weight" | |
) | |
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = original_state_dict.pop( | |
f"blocks.{i}.self_attn.{o}.{lora_up_key}.weight" | |
) | |
if f"blocks.{i}.self_attn.{o}.diff_b" in original_state_dict: | |
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.bias"] = original_state_dict.pop( | |
f"blocks.{i}.self_attn.{o}.diff_b" | |
) | |
# Cross-attention | |
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight" | |
) | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight" | |
) | |
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict: | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.diff_b" | |
) | |
if is_i2v_lora: | |
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]): | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.{lora_down_key}.weight" | |
) | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.{lora_up_key}.weight" | |
) | |
if f"blocks.{i}.cross_attn.{o}.diff_b" in original_state_dict: | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.bias"] = original_state_dict.pop( | |
f"blocks.{i}.cross_attn.{o}.diff_b" | |
) | |
# FFN | |
for o, c in zip(["ffn.0", "ffn.2"], ["net.0.proj", "net.2"]): | |
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = original_state_dict.pop( | |
f"blocks.{i}.{o}.{lora_down_key}.weight" | |
) | |
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = original_state_dict.pop( | |
f"blocks.{i}.{o}.{lora_up_key}.weight" | |
) | |
if f"blocks.{i}.{o}.diff_b" in original_state_dict: | |
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.bias"] = original_state_dict.pop( | |
f"blocks.{i}.{o}.diff_b" | |
) | |
# Remaining. | |
if original_state_dict: | |
if any("time_projection" in k for k in original_state_dict): | |
converted_state_dict["condition_embedder.time_proj.lora_A.weight"] = original_state_dict.pop( | |
f"time_projection.1.{lora_down_key}.weight" | |
) | |
converted_state_dict["condition_embedder.time_proj.lora_B.weight"] = original_state_dict.pop( | |
f"time_projection.1.{lora_up_key}.weight" | |
) | |
if "time_projection.1.diff_b" in original_state_dict: | |
converted_state_dict["condition_embedder.time_proj.lora_B.bias"] = original_state_dict.pop( | |
"time_projection.1.diff_b" | |
) | |
if any("head.head" in k for k in state_dict): | |
converted_state_dict["proj_out.lora_A.weight"] = original_state_dict.pop( | |
f"head.head.{lora_down_key}.weight" | |
) | |
converted_state_dict["proj_out.lora_B.weight"] = original_state_dict.pop(f"head.head.{lora_up_key}.weight") | |
if "head.head.diff_b" in original_state_dict: | |
converted_state_dict["proj_out.lora_B.bias"] = original_state_dict.pop("head.head.diff_b") | |
for text_time in ["text_embedding", "time_embedding"]: | |
if any(text_time in k for k in original_state_dict): | |
for b_n in [0, 2]: | |
diffusers_b_n = 1 if b_n == 0 else 2 | |
diffusers_name = ( | |
"condition_embedder.text_embedder" | |
if text_time == "text_embedding" | |
else "condition_embedder.time_embedder" | |
) | |
if any(f"{text_time}.{b_n}" in k for k in original_state_dict): | |
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_A.weight"] = ( | |
original_state_dict.pop(f"{text_time}.{b_n}.{lora_down_key}.weight") | |
) | |
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_B.weight"] = ( | |
original_state_dict.pop(f"{text_time}.{b_n}.{lora_up_key}.weight") | |
) | |
if f"{text_time}.{b_n}.diff_b" in original_state_dict: | |
converted_state_dict[f"{diffusers_name}.linear_{diffusers_b_n}.lora_B.bias"] = ( | |
original_state_dict.pop(f"{text_time}.{b_n}.diff_b") | |
) | |
if len(original_state_dict) > 0: | |
diff = all(".diff" in k for k in original_state_dict) | |
if diff: | |
diff_keys = {k for k in original_state_dict if k.endswith(".diff")} | |
if not all("lora" not in k for k in diff_keys): | |
raise ValueError | |
logger.info( | |
"The remaining `state_dict` contains `diff` keys which we do not handle yet. If you see performance issues, please file an issue: " | |
"https://github.com/huggingface/diffusers//issues/new" | |
) | |
else: | |
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}") | |
for key in list(converted_state_dict.keys()): | |
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key) | |
return converted_state_dict | |
def _convert_musubi_wan_lora_to_diffusers(state_dict): | |
# https://github.com/kohya-ss/musubi-tuner | |
converted_state_dict = {} | |
original_state_dict = {k[len("lora_unet_") :]: v for k, v in state_dict.items()} | |
num_blocks = len({k.split("blocks_")[1].split("_")[0] for k in original_state_dict}) | |
is_i2v_lora = any("k_img" in k for k in original_state_dict) and any("v_img" in k for k in original_state_dict) | |
def get_alpha_scales(down_weight, key): | |
rank = down_weight.shape[0] | |
alpha = original_state_dict.pop(key + ".alpha").item() | |
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here | |
scale_down = scale | |
scale_up = 1.0 | |
while scale_down * 2 < scale_up: | |
scale_down *= 2 | |
scale_up /= 2 | |
return scale_down, scale_up | |
for i in range(num_blocks): | |
# Self-attention | |
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): | |
down_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_down.weight") | |
up_weight = original_state_dict.pop(f"blocks_{i}_self_attn_{o}.lora_up.weight") | |
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_self_attn_{o}") | |
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_A.weight"] = down_weight * scale_down | |
converted_state_dict[f"blocks.{i}.attn1.{c}.lora_B.weight"] = up_weight * scale_up | |
# Cross-attention | |
for o, c in zip(["q", "k", "v", "o"], ["to_q", "to_k", "to_v", "to_out.0"]): | |
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight") | |
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight") | |
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}") | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up | |
if is_i2v_lora: | |
for o, c in zip(["k_img", "v_img"], ["add_k_proj", "add_v_proj"]): | |
down_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_down.weight") | |
up_weight = original_state_dict.pop(f"blocks_{i}_cross_attn_{o}.lora_up.weight") | |
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_cross_attn_{o}") | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_A.weight"] = down_weight * scale_down | |
converted_state_dict[f"blocks.{i}.attn2.{c}.lora_B.weight"] = up_weight * scale_up | |
# FFN | |
for o, c in zip(["ffn_0", "ffn_2"], ["net.0.proj", "net.2"]): | |
down_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_down.weight") | |
up_weight = original_state_dict.pop(f"blocks_{i}_{o}.lora_up.weight") | |
scale_down, scale_up = get_alpha_scales(down_weight, f"blocks_{i}_{o}") | |
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_A.weight"] = down_weight * scale_down | |
converted_state_dict[f"blocks.{i}.ffn.{c}.lora_B.weight"] = up_weight * scale_up | |
if len(original_state_dict) > 0: | |
raise ValueError(f"`state_dict` should be empty at this point but has {original_state_dict.keys()=}") | |
for key in list(converted_state_dict.keys()): | |
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key) | |
return converted_state_dict | |
def _convert_non_diffusers_hidream_lora_to_diffusers(state_dict, non_diffusers_prefix="diffusion_model"): | |
if not all(k.startswith(non_diffusers_prefix) for k in state_dict): | |
raise ValueError("Invalid LoRA state dict for HiDream.") | |
converted_state_dict = {k.removeprefix(f"{non_diffusers_prefix}."): v for k, v in state_dict.items()} | |
converted_state_dict = {f"transformer.{k}": v for k, v in converted_state_dict.items()} | |
return converted_state_dict | |
def _convert_non_diffusers_ltxv_lora_to_diffusers(state_dict, non_diffusers_prefix="diffusion_model"): | |
if not all(k.startswith(f"{non_diffusers_prefix}.") for k in state_dict): | |
raise ValueError("Invalid LoRA state dict for LTX-Video.") | |
converted_state_dict = {k.removeprefix(f"{non_diffusers_prefix}."): v for k, v in state_dict.items()} | |
converted_state_dict = {f"transformer.{k}": v for k, v in converted_state_dict.items()} | |
return converted_state_dict | |