Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import inspect | |
from typing import Dict, List, Optional, Union | |
from ..utils import is_transformers_available, logging | |
from .auto import DiffusersAutoQuantizer | |
from .base import DiffusersQuantizer | |
from .quantization_config import QuantizationConfigMixin as DiffQuantConfigMixin | |
try: | |
from transformers.utils.quantization_config import QuantizationConfigMixin as TransformersQuantConfigMixin | |
except ImportError: | |
class TransformersQuantConfigMixin: | |
pass | |
logger = logging.get_logger(__name__) | |
class PipelineQuantizationConfig: | |
""" | |
Configuration class to be used when applying quantization on-the-fly to [`~DiffusionPipeline.from_pretrained`]. | |
Args: | |
quant_backend (`str`): Quantization backend to be used. When using this option, we assume that the backend | |
is available to both `diffusers` and `transformers`. | |
quant_kwargs (`dict`): Params to initialize the quantization backend class. | |
components_to_quantize (`list`): Components of a pipeline to be quantized. | |
quant_mapping (`dict`): Mapping defining the quantization specs to be used for the pipeline | |
components. When using this argument, users are not expected to provide `quant_backend`, `quant_kawargs`, | |
and `components_to_quantize`. | |
""" | |
def __init__( | |
self, | |
quant_backend: str = None, | |
quant_kwargs: Dict[str, Union[str, float, int, dict]] = None, | |
components_to_quantize: Optional[List[str]] = None, | |
quant_mapping: Dict[str, Union[DiffQuantConfigMixin, "TransformersQuantConfigMixin"]] = None, | |
): | |
self.quant_backend = quant_backend | |
# Initialize kwargs to be {} to set to the defaults. | |
self.quant_kwargs = quant_kwargs or {} | |
self.components_to_quantize = components_to_quantize | |
self.quant_mapping = quant_mapping | |
self.post_init() | |
def post_init(self): | |
quant_mapping = self.quant_mapping | |
self.is_granular = True if quant_mapping is not None else False | |
self._validate_init_args() | |
def _validate_init_args(self): | |
if self.quant_backend and self.quant_mapping: | |
raise ValueError("Both `quant_backend` and `quant_mapping` cannot be specified at the same time.") | |
if not self.quant_mapping and not self.quant_backend: | |
raise ValueError("Must provide a `quant_backend` when not providing a `quant_mapping`.") | |
if not self.quant_kwargs and not self.quant_mapping: | |
raise ValueError("Both `quant_kwargs` and `quant_mapping` cannot be None.") | |
if self.quant_backend is not None: | |
self._validate_init_kwargs_in_backends() | |
if self.quant_mapping is not None: | |
self._validate_quant_mapping_args() | |
def _validate_init_kwargs_in_backends(self): | |
quant_backend = self.quant_backend | |
self._check_backend_availability(quant_backend) | |
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
if quant_config_mapping_transformers is not None: | |
init_kwargs_transformers = inspect.signature(quant_config_mapping_transformers[quant_backend].__init__) | |
init_kwargs_transformers = {name for name in init_kwargs_transformers.parameters if name != "self"} | |
else: | |
init_kwargs_transformers = None | |
init_kwargs_diffusers = inspect.signature(quant_config_mapping_diffusers[quant_backend].__init__) | |
init_kwargs_diffusers = {name for name in init_kwargs_diffusers.parameters if name != "self"} | |
if init_kwargs_transformers != init_kwargs_diffusers: | |
raise ValueError( | |
"The signatures of the __init__ methods of the quantization config classes in `diffusers` and `transformers` don't match. " | |
f"Please provide a `quant_mapping` instead, in the {self.__class__.__name__} class. Refer to [the docs](https://huggingface.co/docs/diffusers/main/en/quantization/overview#pipeline-level-quantization) to learn more about how " | |
"this mapping would look like." | |
) | |
def _validate_quant_mapping_args(self): | |
quant_mapping = self.quant_mapping | |
transformers_map, diffusers_map = self._get_quant_config_list() | |
available_transformers = list(transformers_map.values()) if transformers_map else None | |
available_diffusers = list(diffusers_map.values()) | |
for module_name, config in quant_mapping.items(): | |
if any(isinstance(config, cfg) for cfg in available_diffusers): | |
continue | |
if available_transformers and any(isinstance(config, cfg) for cfg in available_transformers): | |
continue | |
if available_transformers: | |
raise ValueError( | |
f"Provided config for module_name={module_name} could not be found. " | |
f"Available diffusers configs: {available_diffusers}; " | |
f"Available transformers configs: {available_transformers}." | |
) | |
else: | |
raise ValueError( | |
f"Provided config for module_name={module_name} could not be found. " | |
f"Available diffusers configs: {available_diffusers}." | |
) | |
def _check_backend_availability(self, quant_backend: str): | |
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
available_backends_transformers = ( | |
list(quant_config_mapping_transformers.keys()) if quant_config_mapping_transformers else None | |
) | |
available_backends_diffusers = list(quant_config_mapping_diffusers.keys()) | |
if ( | |
available_backends_transformers and quant_backend not in available_backends_transformers | |
) or quant_backend not in quant_config_mapping_diffusers: | |
error_message = f"Provided quant_backend={quant_backend} was not found." | |
if available_backends_transformers: | |
error_message += f"\nAvailable ones (transformers): {available_backends_transformers}." | |
error_message += f"\nAvailable ones (diffusers): {available_backends_diffusers}." | |
raise ValueError(error_message) | |
def _resolve_quant_config(self, is_diffusers: bool = True, module_name: str = None): | |
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() | |
quant_mapping = self.quant_mapping | |
components_to_quantize = self.components_to_quantize | |
# Granular case | |
if self.is_granular and module_name in quant_mapping: | |
logger.debug(f"Initializing quantization config class for {module_name}.") | |
config = quant_mapping[module_name] | |
return config | |
# Global config case | |
else: | |
should_quantize = False | |
# Only quantize the modules requested for. | |
if components_to_quantize and module_name in components_to_quantize: | |
should_quantize = True | |
# No specification for `components_to_quantize` means all modules should be quantized. | |
elif not self.is_granular and not components_to_quantize: | |
should_quantize = True | |
if should_quantize: | |
logger.debug(f"Initializing quantization config class for {module_name}.") | |
mapping_to_use = quant_config_mapping_diffusers if is_diffusers else quant_config_mapping_transformers | |
quant_config_cls = mapping_to_use[self.quant_backend] | |
quant_kwargs = self.quant_kwargs | |
return quant_config_cls(**quant_kwargs) | |
# Fallback: no applicable configuration found. | |
return None | |
def _get_quant_config_list(self): | |
if is_transformers_available(): | |
from transformers.quantizers.auto import ( | |
AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_transformers, | |
) | |
else: | |
quant_config_mapping_transformers = None | |
from ..quantizers.auto import AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_diffusers | |
return quant_config_mapping_transformers, quant_config_mapping_diffusers | |