multimodalart's picture
Upload 2025 files
22a452a verified
from typing import TYPE_CHECKING, Any, Dict, List, Union
from diffusers.utils.import_utils import is_optimum_quanto_version
from ...utils import (
get_module_from_name,
is_accelerate_available,
is_accelerate_version,
is_optimum_quanto_available,
is_torch_available,
logging,
)
from ..base import DiffusersQuantizer
if TYPE_CHECKING:
from ...models.modeling_utils import ModelMixin
if is_torch_available():
import torch
if is_accelerate_available():
from accelerate.utils import CustomDtype, set_module_tensor_to_device
if is_optimum_quanto_available():
from .utils import _replace_with_quanto_layers
logger = logging.get_logger(__name__)
class QuantoQuantizer(DiffusersQuantizer):
r"""
Diffusers Quantizer for Optimum Quanto
"""
use_keep_in_fp32_modules = True
requires_calibration = False
required_packages = ["quanto", "accelerate"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
def validate_environment(self, *args, **kwargs):
if not is_optimum_quanto_available():
raise ImportError(
"Loading an optimum-quanto quantized model requires optimum-quanto library (`pip install optimum-quanto`)"
)
if not is_optimum_quanto_version(">=", "0.2.6"):
raise ImportError(
"Loading an optimum-quanto quantized model requires `optimum-quanto>=0.2.6`. "
"Please upgrade your installation with `pip install --upgrade optimum-quanto"
)
if not is_accelerate_available():
raise ImportError(
"Loading an optimum-quanto quantized model requires accelerate library (`pip install accelerate`)"
)
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict) and len(device_map.keys()) > 1:
raise ValueError(
"`device_map` for multi-GPU inference or CPU/disk offload is currently not supported with Diffusers and the Quanto backend"
)
def check_if_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
):
# Quanto imports diffusers internally. This is here to prevent circular imports
from optimum.quanto import QModuleMixin, QTensor
from optimum.quanto.tensor.packed import PackedTensor
module, tensor_name = get_module_from_name(model, param_name)
if self.pre_quantized and any(isinstance(module, t) for t in [QTensor, PackedTensor]):
return True
elif isinstance(module, QModuleMixin) and "weight" in tensor_name:
return not module.frozen
return False
def create_quantized_param(
self,
model: "ModelMixin",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
*args,
**kwargs,
):
"""
Create the quantized parameter by calling .freeze() after setting it to the module.
"""
dtype = kwargs.get("dtype", torch.float32)
module, tensor_name = get_module_from_name(model, param_name)
if self.pre_quantized:
setattr(module, tensor_name, param_value)
else:
set_module_tensor_to_device(model, param_name, target_device, param_value, dtype)
module.freeze()
module.weight.requires_grad = False
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
return max_memory
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
if is_accelerate_version(">=", "0.27.0"):
mapping = {
"int8": torch.int8,
"float8": CustomDtype.FP8,
"int4": CustomDtype.INT4,
"int2": CustomDtype.INT2,
}
target_dtype = mapping[self.quantization_config.weights_dtype]
return target_dtype
def update_torch_dtype(self, torch_dtype: "torch.dtype" = None) -> "torch.dtype":
if torch_dtype is None:
logger.info("You did not specify `torch_dtype` in `from_pretrained`. Setting it to `torch.float32`.")
torch_dtype = torch.float32
return torch_dtype
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]:
# Quanto imports diffusers internally. This is here to prevent circular imports
from optimum.quanto import QModuleMixin
not_missing_keys = []
for name, module in model.named_modules():
if isinstance(module, QModuleMixin):
for missing in missing_keys:
if (
(name in missing or name in f"{prefix}.{missing}")
and not missing.endswith(".weight")
and not missing.endswith(".bias")
):
not_missing_keys.append(missing)
return [k for k in missing_keys if k not in not_missing_keys]
def _process_model_before_weight_loading(
self,
model: "ModelMixin",
device_map,
keep_in_fp32_modules: List[str] = [],
**kwargs,
):
self.modules_to_not_convert = self.quantization_config.modules_to_not_convert
if not isinstance(self.modules_to_not_convert, list):
self.modules_to_not_convert = [self.modules_to_not_convert]
self.modules_to_not_convert.extend(keep_in_fp32_modules)
model = _replace_with_quanto_layers(
model,
modules_to_not_convert=self.modules_to_not_convert,
quantization_config=self.quantization_config,
pre_quantized=self.pre_quantized,
)
model.config.quantization_config = self.quantization_config
def _process_model_after_weight_loading(self, model, **kwargs):
return model
@property
def is_trainable(self):
return True
@property
def is_serializable(self):
return True