Spaces:
Running
on
Zero
Running
on
Zero
# # Copyright 2024 Sana-Sprint Authors and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion | |
# and https://github.com/hojonathanho/diffusion | |
from dataclasses import dataclass | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..schedulers.scheduling_utils import SchedulerMixin | |
from ..utils import BaseOutput, logging | |
from ..utils.torch_utils import randn_tensor | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->SCM | |
class SCMSchedulerOutput(BaseOutput): | |
""" | |
Output class for the scheduler's `step` function output. | |
Args: | |
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): | |
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. | |
`pred_original_sample` can be used to preview progress or for guidance. | |
""" | |
prev_sample: torch.Tensor | |
pred_original_sample: Optional[torch.Tensor] = None | |
class SCMScheduler(SchedulerMixin, ConfigMixin): | |
""" | |
`SCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with | |
non-Markovian guidance. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass | |
documentation for the generic methods the library implements for all schedulers such as loading and saving. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
prediction_type (`str`, defaults to `trigflow`): | |
Prediction type of the scheduler function. Currently only supports "trigflow". | |
sigma_data (`float`, defaults to 0.5): | |
The standard deviation of the noise added during multi-step inference. | |
""" | |
# _compatibles = [e.name for e in KarrasDiffusionSchedulers] | |
order = 1 | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
prediction_type: str = "trigflow", | |
sigma_data: float = 0.5, | |
): | |
""" | |
Initialize the SCM scheduler. | |
Args: | |
num_train_timesteps (`int`, defaults to 1000): | |
The number of diffusion steps to train the model. | |
prediction_type (`str`, defaults to `trigflow`): | |
Prediction type of the scheduler function. Currently only supports "trigflow". | |
sigma_data (`float`, defaults to 0.5): | |
The standard deviation of the noise added during multi-step inference. | |
""" | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# setable values | |
self.num_inference_steps = None | |
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64)) | |
self._step_index = None | |
self._begin_index = None | |
def step_index(self): | |
return self._step_index | |
def begin_index(self): | |
return self._begin_index | |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index | |
def set_begin_index(self, begin_index: int = 0): | |
""" | |
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | |
Args: | |
begin_index (`int`): | |
The begin index for the scheduler. | |
""" | |
self._begin_index = begin_index | |
def set_timesteps( | |
self, | |
num_inference_steps: int, | |
timesteps: torch.Tensor = None, | |
device: Union[str, torch.device] = None, | |
max_timesteps: float = 1.57080, | |
intermediate_timesteps: float = 1.3, | |
): | |
""" | |
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | |
Args: | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. | |
timesteps (`torch.Tensor`, *optional*): | |
Custom timesteps to use for the denoising process. | |
max_timesteps (`float`, defaults to 1.57080): | |
The maximum timestep value used in the SCM scheduler. | |
intermediate_timesteps (`float`, *optional*, defaults to 1.3): | |
The intermediate timestep value used in SCM scheduler (only used when num_inference_steps=2). | |
""" | |
if num_inference_steps > self.config.num_train_timesteps: | |
raise ValueError( | |
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" | |
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" | |
f" maximal {self.config.num_train_timesteps} timesteps." | |
) | |
if timesteps is not None and len(timesteps) != num_inference_steps + 1: | |
raise ValueError("If providing custom timesteps, `timesteps` must be of length `num_inference_steps + 1`.") | |
if timesteps is not None and max_timesteps is not None: | |
raise ValueError("If providing custom timesteps, `max_timesteps` should not be provided.") | |
if timesteps is None and max_timesteps is None: | |
raise ValueError("Should provide either `timesteps` or `max_timesteps`.") | |
if intermediate_timesteps is not None and num_inference_steps != 2: | |
raise ValueError("Intermediate timesteps for SCM is not supported when num_inference_steps != 2.") | |
self.num_inference_steps = num_inference_steps | |
if timesteps is not None: | |
if isinstance(timesteps, list): | |
self.timesteps = torch.tensor(timesteps, device=device).float() | |
elif isinstance(timesteps, torch.Tensor): | |
self.timesteps = timesteps.to(device).float() | |
else: | |
raise ValueError(f"Unsupported timesteps type: {type(timesteps)}") | |
elif intermediate_timesteps is not None: | |
self.timesteps = torch.tensor([max_timesteps, intermediate_timesteps, 0], device=device).float() | |
else: | |
# max_timesteps=arctan(80/0.5)=1.56454 is the default from sCM paper, we choose a different value here | |
self.timesteps = torch.linspace(max_timesteps, 0, num_inference_steps + 1, device=device).float() | |
print(f"Set timesteps: {self.timesteps}") | |
self._step_index = None | |
self._begin_index = None | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index | |
def _init_step_index(self, timestep): | |
if self.begin_index is None: | |
if isinstance(timestep, torch.Tensor): | |
timestep = timestep.to(self.timesteps.device) | |
self._step_index = self.index_for_timestep(timestep) | |
else: | |
self._step_index = self._begin_index | |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep | |
def index_for_timestep(self, timestep, schedule_timesteps=None): | |
if schedule_timesteps is None: | |
schedule_timesteps = self.timesteps | |
indices = (schedule_timesteps == timestep).nonzero() | |
# The sigma index that is taken for the **very** first `step` | |
# is always the second index (or the last index if there is only 1) | |
# This way we can ensure we don't accidentally skip a sigma in | |
# case we start in the middle of the denoising schedule (e.g. for image-to-image) | |
pos = 1 if len(indices) > 1 else 0 | |
return indices[pos].item() | |
def step( | |
self, | |
model_output: torch.FloatTensor, | |
timestep: float, | |
sample: torch.FloatTensor, | |
generator: torch.Generator = None, | |
return_dict: bool = True, | |
) -> Union[SCMSchedulerOutput, Tuple]: | |
""" | |
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion | |
process from the learned model outputs (most often the predicted noise). | |
Args: | |
model_output (`torch.FloatTensor`): | |
The direct output from learned diffusion model. | |
timestep (`float`): | |
The current discrete timestep in the diffusion chain. | |
sample (`torch.FloatTensor`): | |
A current instance of a sample created by the diffusion process. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~schedulers.scheduling_scm.SCMSchedulerOutput`] or `tuple`. | |
Returns: | |
[`~schedulers.scheduling_utils.SCMSchedulerOutput`] or `tuple`: | |
If return_dict is `True`, [`~schedulers.scheduling_scm.SCMSchedulerOutput`] is returned, otherwise a | |
tuple is returned where the first element is the sample tensor. | |
""" | |
if self.num_inference_steps is None: | |
raise ValueError( | |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" | |
) | |
if self.step_index is None: | |
self._init_step_index(timestep) | |
# 2. compute alphas, betas | |
t = self.timesteps[self.step_index + 1] | |
s = self.timesteps[self.step_index] | |
# 4. Different Parameterization: | |
parameterization = self.config.prediction_type | |
if parameterization == "trigflow": | |
pred_x0 = torch.cos(s) * sample - torch.sin(s) * model_output | |
else: | |
raise ValueError(f"Unsupported parameterization: {parameterization}") | |
# 5. Sample z ~ N(0, I), For MultiStep Inference | |
# Noise is not used for one-step sampling. | |
if len(self.timesteps) > 1: | |
noise = ( | |
randn_tensor(model_output.shape, device=model_output.device, generator=generator) | |
* self.config.sigma_data | |
) | |
prev_sample = torch.cos(t) * pred_x0 + torch.sin(t) * noise | |
else: | |
prev_sample = pred_x0 | |
self._step_index += 1 | |
if not return_dict: | |
return (prev_sample, pred_x0) | |
return SCMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_x0) | |
def __len__(self): | |
return self.config.num_train_timesteps | |