Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-2025 Marigold Team, ETH Zürich. All rights reserved. | |
# Copyright 2024-2025 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# -------------------------------------------------------------------------- | |
# More information and citation instructions are available on the | |
# Marigold project website: https://marigoldcomputervision.github.io | |
# -------------------------------------------------------------------------- | |
import gc | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
AutoencoderTiny, | |
DDIMScheduler, | |
MarigoldIntrinsicsPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
backend_empty_cache, | |
enable_full_determinism, | |
floats_tensor, | |
load_image, | |
require_torch_accelerator, | |
slow, | |
torch_device, | |
) | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class MarigoldIntrinsicsPipelineTesterMixin(PipelineTesterMixin): | |
def _test_inference_batch_single_identical( | |
self, | |
batch_size=2, | |
expected_max_diff=1e-4, | |
additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
for components in pipe.components.values(): | |
if hasattr(components, "set_default_attn_processor"): | |
components.set_default_attn_processor() | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
# Reset generator in case it is has been used in self.get_dummy_inputs | |
inputs["generator"] = self.get_generator(0) | |
logger = diffusers.logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# batchify inputs | |
batched_inputs = {} | |
batched_inputs.update(inputs) | |
for name in self.batch_params: | |
if name not in inputs: | |
continue | |
value = inputs[name] | |
if name == "prompt": | |
len_prompt = len(value) | |
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
batched_inputs[name][-1] = 100 * "very long" | |
else: | |
batched_inputs[name] = batch_size * [value] | |
if "generator" in inputs: | |
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
if "batch_size" in inputs: | |
batched_inputs["batch_size"] = batch_size | |
for arg in additional_params_copy_to_batched_inputs: | |
batched_inputs[arg] = inputs[arg] | |
output = pipe(**inputs) | |
output_batch = pipe(**batched_inputs) | |
assert output_batch[0].shape[0] == batch_size * output[0].shape[0] # only changed here | |
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
assert max_diff < expected_max_diff | |
def _test_inference_batch_consistent( | |
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True | |
): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["generator"] = self.get_generator(0) | |
logger = diffusers.logging.get_logger(pipe.__module__) | |
logger.setLevel(level=diffusers.logging.FATAL) | |
# prepare batched inputs | |
batched_inputs = [] | |
for batch_size in batch_sizes: | |
batched_input = {} | |
batched_input.update(inputs) | |
for name in self.batch_params: | |
if name not in inputs: | |
continue | |
value = inputs[name] | |
if name == "prompt": | |
len_prompt = len(value) | |
# make unequal batch sizes | |
batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
# make last batch super long | |
batched_input[name][-1] = 100 * "very long" | |
else: | |
batched_input[name] = batch_size * [value] | |
if batch_generator and "generator" in inputs: | |
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
if "batch_size" in inputs: | |
batched_input["batch_size"] = batch_size | |
batched_inputs.append(batched_input) | |
logger.setLevel(level=diffusers.logging.WARNING) | |
for batch_size, batched_input in zip(batch_sizes, batched_inputs): | |
output = pipe(**batched_input) | |
assert len(output[0]) == batch_size * pipe.n_targets # only changed here | |
class MarigoldIntrinsicsPipelineFastTests(MarigoldIntrinsicsPipelineTesterMixin, unittest.TestCase): | |
pipeline_class = MarigoldIntrinsicsPipeline | |
params = frozenset(["image"]) | |
batch_params = frozenset(["image"]) | |
image_params = frozenset(["image"]) | |
image_latents_params = frozenset(["latents"]) | |
callback_cfg_params = frozenset([]) | |
test_xformers_attention = False | |
required_optional_params = frozenset( | |
[ | |
"num_inference_steps", | |
"generator", | |
"output_type", | |
] | |
) | |
def get_dummy_components(self, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
time_cond_proj_dim=time_cond_proj_dim, | |
sample_size=32, | |
in_channels=12, | |
out_channels=8, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
) | |
torch.manual_seed(0) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
prediction_type="v_prediction", | |
set_alpha_to_one=False, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
thresholding=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"prediction_type": "intrinsics", | |
} | |
return components | |
def get_dummy_tiny_autoencoder(self): | |
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | |
def get_dummy_inputs(self, device, seed=0): | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image / 2 + 0.5 | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"image": image, | |
"num_inference_steps": 1, | |
"processing_resolution": 0, | |
"generator": generator, | |
"output_type": "np", | |
} | |
return inputs | |
def _test_marigold_intrinsics( | |
self, | |
generator_seed: int = 0, | |
expected_slice: np.ndarray = None, | |
atol: float = 1e-4, | |
**pipe_kwargs, | |
): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) | |
pipe_inputs.update(**pipe_kwargs) | |
prediction = pipe(**pipe_inputs).prediction | |
prediction_slice = prediction[0, -3:, -3:, -1].flatten() | |
if pipe_inputs.get("match_input_resolution", True): | |
self.assertEqual(prediction.shape, (2, 32, 32, 3), "Unexpected output resolution") | |
else: | |
self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions") | |
self.assertEqual( | |
max(prediction.shape[1:3]), | |
pipe_inputs.get("processing_resolution", 768), | |
"Unexpected output resolution", | |
) | |
np.set_printoptions(precision=5, suppress=True) | |
msg = f"{prediction_slice}" | |
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg) | |
# self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) | |
def test_marigold_depth_dummy_defaults(self): | |
self._test_marigold_intrinsics( | |
expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]), | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.6423, 0.40664, 0.41185, 0.65832, 0.63935, 0.43971, 0.51786, 0.55216, 0.47683]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.53132, 0.44487, 0.40164, 0.5326, 0.49073, 0.46979, 0.53324, 0.51366, 0.50387]), | |
num_inference_steps=1, | |
processing_resolution=16, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=2024, | |
expected_slice=np.array([0.40257, 0.39468, 0.51373, 0.4161, 0.40162, 0.58535, 0.43581, 0.47834, 0.48951]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.49636, 0.4518, 0.42722, 0.59044, 0.6362, 0.39011, 0.53522, 0.55153, 0.48699]), | |
num_inference_steps=2, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.55547, 0.43511, 0.4887, 0.56399, 0.63867, 0.56337, 0.47889, 0.52925, 0.49235]), | |
num_inference_steps=1, | |
processing_resolution=64, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.57249, 0.49824, 0.54438, 0.57733, 0.52404, 0.5255, 0.56493, 0.56336, 0.48579]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=3, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.6294, 0.5575, 0.53414, 0.61077, 0.57156, 0.53974, 0.52956, 0.55467, 0.48751]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=4, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=2, | |
match_input_resolution=True, | |
) | |
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): | |
self._test_marigold_intrinsics( | |
generator_seed=0, | |
expected_slice=np.array([0.63511, 0.68137, 0.48783, 0.46689, 0.58505, 0.36757, 0.58465, 0.54302, 0.50387]), | |
num_inference_steps=1, | |
processing_resolution=16, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=False, | |
) | |
def test_marigold_depth_dummy_no_num_inference_steps(self): | |
with self.assertRaises(ValueError) as e: | |
self._test_marigold_intrinsics( | |
num_inference_steps=None, | |
expected_slice=np.array([0.0]), | |
) | |
self.assertIn("num_inference_steps", str(e)) | |
def test_marigold_depth_dummy_no_processing_resolution(self): | |
with self.assertRaises(ValueError) as e: | |
self._test_marigold_intrinsics( | |
processing_resolution=None, | |
expected_slice=np.array([0.0]), | |
) | |
self.assertIn("processing_resolution", str(e)) | |
class MarigoldIntrinsicsPipelineIntegrationTests(unittest.TestCase): | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
backend_empty_cache(torch_device) | |
def _test_marigold_intrinsics( | |
self, | |
is_fp16: bool = True, | |
device: str = "cuda", | |
generator_seed: int = 0, | |
expected_slice: np.ndarray = None, | |
model_id: str = "prs-eth/marigold-iid-appearance-v1-1", | |
image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", | |
atol: float = 1e-4, | |
**pipe_kwargs, | |
): | |
from_pretrained_kwargs = {} | |
if is_fp16: | |
from_pretrained_kwargs["variant"] = "fp16" | |
from_pretrained_kwargs["torch_dtype"] = torch.float16 | |
pipe = MarigoldIntrinsicsPipeline.from_pretrained(model_id, **from_pretrained_kwargs) | |
if device in ["cuda", "xpu"]: | |
pipe.enable_model_cpu_offload() | |
pipe.set_progress_bar_config(disable=None) | |
generator = torch.Generator(device=device).manual_seed(generator_seed) | |
image = load_image(image_url) | |
width, height = image.size | |
prediction = pipe(image, generator=generator, **pipe_kwargs).prediction | |
prediction_slice = prediction[0, -3:, -3:, -1].flatten() | |
if pipe_kwargs.get("match_input_resolution", True): | |
self.assertEqual(prediction.shape, (2, height, width, 3), "Unexpected output resolution") | |
else: | |
self.assertTrue(prediction.shape[0] == 2 and prediction.shape[3] == 3, "Unexpected output dimensions") | |
self.assertEqual( | |
max(prediction.shape[1:3]), | |
pipe_kwargs.get("processing_resolution", 768), | |
"Unexpected output resolution", | |
) | |
msg = f"{prediction_slice}" | |
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol), msg) | |
# self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) | |
def test_marigold_intrinsics_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=False, | |
device="cpu", | |
generator_seed=0, | |
expected_slice=np.array([0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162, 0.9162]), | |
num_inference_steps=1, | |
processing_resolution=32, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f32_accelerator_G0_S1_P768_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=False, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.62127, 0.61906, 0.61687, 0.61946, 0.61903, 0.61961, 0.61808, 0.62099, 0.62894]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.62109, 0.61914, 0.61719, 0.61963, 0.61914, 0.61963, 0.61816, 0.62109, 0.62891]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G2024_S1_P768_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=2024, | |
expected_slice=np.array([0.64111, 0.63916, 0.63623, 0.63965, 0.63916, 0.63965, 0.6377, 0.64062, 0.64941]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S2_P768_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.60254, 0.60059, 0.59961, 0.60156, 0.60107, 0.60205, 0.60254, 0.60449, 0.61133]), | |
num_inference_steps=2, | |
processing_resolution=768, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.64551, 0.64453, 0.64404, 0.64502, 0.64844, 0.65039, 0.64502, 0.65039, 0.65332]), | |
num_inference_steps=1, | |
processing_resolution=512, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E3_B1_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.61572, 0.61377, 0.61182, 0.61426, 0.61377, 0.61426, 0.61279, 0.61572, 0.62354]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=3, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=1, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P768_E4_B2_M1(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.61914, 0.6167, 0.61475, 0.61719, 0.61719, 0.61768, 0.61572, 0.61914, 0.62695]), | |
num_inference_steps=1, | |
processing_resolution=768, | |
ensemble_size=4, | |
ensembling_kwargs={"reduction": "mean"}, | |
batch_size=2, | |
match_input_resolution=True, | |
) | |
def test_marigold_intrinsics_einstein_f16_accelerator_G0_S1_P512_E1_B1_M0(self): | |
self._test_marigold_intrinsics( | |
is_fp16=True, | |
device=torch_device, | |
generator_seed=0, | |
expected_slice=np.array([0.65332, 0.64697, 0.64648, 0.64844, 0.64697, 0.64111, 0.64941, 0.64209, 0.65332]), | |
num_inference_steps=1, | |
processing_resolution=512, | |
ensemble_size=1, | |
batch_size=1, | |
match_input_resolution=False, | |
) | |