# Copyright 2024 Alpha-VLLM and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Any, Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast from ...image_processor import VaeImageProcessor from ...loaders import Lumina2LoraLoaderMixin from ...models import AutoencoderKL from ...models.transformers.transformer_lumina2 import Lumina2Transformer2DModel from ...schedulers import FlowMatchEulerDiscreteScheduler from ...utils import ( deprecate, is_torch_xla_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import Lumina2Pipeline >>> pipe = Lumina2Pipeline.from_pretrained("Alpha-VLLM/Lumina-Image-2.0", torch_dtype=torch.bfloat16) >>> # Enable memory optimizations. >>> pipe.enable_model_cpu_offload() >>> prompt = "Upper body of a young woman in a Victorian-era outfit with brass goggles and leather straps. Background shows an industrial revolution cityscape with smoky skies and tall, metal structures" >>> image = pipe(prompt).images[0] ``` """ # Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift def calculate_shift( image_seq_len, base_seq_len: int = 256, max_seq_len: int = 4096, base_shift: float = 0.5, max_shift: float = 1.15, ): m = (max_shift - base_shift) / (max_seq_len - base_seq_len) b = base_shift - m * base_seq_len mu = image_seq_len * m + b return mu # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): r""" Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps class Lumina2Pipeline(DiffusionPipeline, Lumina2LoraLoaderMixin): r""" Pipeline for text-to-image generation using Lumina-T2I. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`Gemma2PreTrainedModel`]): Frozen Gemma2 text-encoder. tokenizer (`GemmaTokenizer` or `GemmaTokenizerFast`): Gemma tokenizer. transformer ([`Transformer2DModel`]): A text conditioned `Transformer2DModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ _optional_components = [] _callback_tensor_inputs = ["latents", "prompt_embeds"] model_cpu_offload_seq = "text_encoder->transformer->vae" def __init__( self, transformer: Lumina2Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: Gemma2PreTrainedModel, tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast], ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler, ) self.vae_scale_factor = 8 self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) self.default_image_size = self.default_sample_size * self.vae_scale_factor self.system_prompt = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts." self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) if getattr(self, "tokenizer", None) is not None: self.tokenizer.padding_side = "right" def _get_gemma_prompt_embeds( self, prompt: Union[str, List[str]], device: Optional[torch.device] = None, max_sequence_length: int = 256, ) -> Tuple[torch.Tensor, torch.Tensor]: device = device or self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt text_inputs = self.tokenizer( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids.to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids.to(device) if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1]) logger.warning( "The following part of your input was truncated because Gemma can only handle sequences up to" f" {max_sequence_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = self.text_encoder( text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True ) prompt_embeds = prompt_embeds.hidden_states[-2] if self.text_encoder is not None: dtype = self.text_encoder.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape return prompt_embeds, prompt_attention_mask # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], do_classifier_free_guidance: bool = True, negative_prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, device: Optional[torch.device] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, system_prompt: Optional[str] = None, max_sequence_length: int = 256, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For Lumina-T2I, this should be "". do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): whether to use classifier free guidance or not num_images_per_prompt (`int`, *optional*, defaults to 1): number of images that should be generated per prompt device: (`torch.device`, *optional*): torch device to place the resulting embeddings on prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Lumina-T2I, it's should be the embeddings of the "" string. max_sequence_length (`int`, defaults to `256`): Maximum sequence length to use for the prompt. """ if device is None: device = self._execution_device prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if system_prompt is None: system_prompt = self.system_prompt if prompt is not None: prompt = [system_prompt + " " + p for p in prompt] if prompt_embeds is None: prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds( prompt=prompt, device=device, max_sequence_length=max_sequence_length, ) batch_size, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) prompt_attention_mask = prompt_attention_mask.view(batch_size * num_images_per_prompt, -1) # Get negative embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt if negative_prompt is not None else "" # Normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): negative_prompt = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) negative_prompt_embeds, negative_prompt_attention_mask = self._get_gemma_prompt_embeds( prompt=negative_prompt, device=device, max_sequence_length=max_sequence_length, ) batch_size, seq_len, _ = negative_prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) negative_prompt_attention_mask = negative_prompt_attention_mask.view( batch_size * num_images_per_prompt, -1 ) return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: raise ValueError( f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: raise ValueError( "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" f" {negative_prompt_attention_mask.shape}." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") def enable_vae_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.vae.enable_slicing() def disable_vae_slicing(self): r""" Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_slicing() def enable_vae_tiling(self): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.vae.enable_tiling() def disable_vae_tiling(self): r""" Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.vae.disable_tiling() def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): # VAE applies 8x compression on images but we must also account for packing which requires # latent height and width to be divisible by 2. height = 2 * (int(height) // (self.vae_scale_factor * 2)) width = 2 * (int(width) // (self.vae_scale_factor * 2)) shape = (batch_size, num_channels_latents, height, width) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) return latents @property def guidance_scale(self): return self._guidance_scale @property def attention_kwargs(self): return self._attention_kwargs # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, width: Optional[int] = None, height: Optional[int] = None, num_inference_steps: int = 30, guidance_scale: float = 4.0, negative_prompt: Union[str, List[str]] = None, sigmas: List[float] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, attention_kwargs: Optional[Dict[str, Any]] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], system_prompt: Optional[str] = None, cfg_trunc_ratio: float = 1.0, cfg_normalization: bool = True, max_sequence_length: int = 256, ) -> Union[ImagePipelineOutput, Tuple]: """ Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_inference_steps (`int`, *optional*, defaults to 30): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. height (`int`, *optional*, defaults to self.unet.config.sample_size): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size): The width in pixels of the generated image. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for text embeddings. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. For Lumina-T2I this negative prompt should be "". If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Pre-generated attention mask for negative text embeddings. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. attention_kwargs: A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. system_prompt (`str`, *optional*): The system prompt to use for the image generation. cfg_trunc_ratio (`float`, *optional*, defaults to `1.0`): The ratio of the timestep interval to apply normalization-based guidance scale. cfg_normalization (`bool`, *optional*, defaults to `True`): Whether to apply normalization-based guidance scale. max_sequence_length (`int`, defaults to `256`): Maximum sequence length to use with the `prompt`. Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor self._guidance_scale = guidance_scale self._attention_kwargs = attention_kwargs # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = self.encode_prompt( prompt, self.do_classifier_free_guidance, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, device=device, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=max_sequence_length, system_prompt=system_prompt, ) # 4. Prepare latents. latent_channels = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, latent_channels, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas image_seq_len = latents.shape[1] mu = calculate_shift( image_seq_len, self.scheduler.config.get("base_image_seq_len", 256), self.scheduler.config.get("max_image_seq_len", 4096), self.scheduler.config.get("base_shift", 0.5), self.scheduler.config.get("max_shift", 1.15), ) timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, sigmas=sigmas, mu=mu, ) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # 6. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # compute whether apply classifier-free truncation on this timestep do_classifier_free_truncation = (i + 1) / num_inference_steps > cfg_trunc_ratio # reverse the timestep since Lumina uses t=0 as the noise and t=1 as the image current_timestep = 1 - t / self.scheduler.config.num_train_timesteps # broadcast to batch dimension in a way that's compatible with ONNX/Core ML current_timestep = current_timestep.expand(latents.shape[0]) noise_pred_cond = self.transformer( hidden_states=latents, timestep=current_timestep, encoder_hidden_states=prompt_embeds, encoder_attention_mask=prompt_attention_mask, return_dict=False, attention_kwargs=self.attention_kwargs, )[0] # perform normalization-based guidance scale on a truncated timestep interval if self.do_classifier_free_guidance and not do_classifier_free_truncation: noise_pred_uncond = self.transformer( hidden_states=latents, timestep=current_timestep, encoder_hidden_states=negative_prompt_embeds, encoder_attention_mask=negative_prompt_attention_mask, return_dict=False, attention_kwargs=self.attention_kwargs, )[0] noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) # apply normalization after classifier-free guidance if cfg_normalization: cond_norm = torch.norm(noise_pred_cond, dim=-1, keepdim=True) noise_norm = torch.norm(noise_pred, dim=-1, keepdim=True) noise_pred = noise_pred * (cond_norm / noise_norm) else: noise_pred = noise_pred_cond # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype noise_pred = -noise_pred latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) else: image = latents # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image) class Lumina2Text2ImgPipeline(Lumina2Pipeline): def __init__( self, transformer: Lumina2Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: Gemma2PreTrainedModel, tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast], ): deprecation_message = "`Lumina2Text2ImgPipeline` has been renamed to `Lumina2Pipeline` and will be removed in a future version. Please use `Lumina2Pipeline` instead." deprecate("diffusers.pipelines.lumina2.pipeline_lumina2.Lumina2Text2ImgPipeline", "0.34", deprecation_message) super().__init__( transformer=transformer, scheduler=scheduler, vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, )