""" This script demonstrates how to extract a LoRA checkpoint from a fully finetuned model with the CogVideoX model. To make it work for other models: * Change the model class. Here we use `CogVideoXTransformer3DModel`. For Flux, it would be `FluxTransformer2DModel`, for example. (TODO: more reason to add `AutoModel`). * Spply path to the base checkpoint via `base_ckpt_path`. * Supply path to the fully fine-tuned checkpoint via `--finetune_ckpt_path`. * Change the `--rank` as needed. Example usage: ```bash python extract_lora_from_model.py \ --base_ckpt_path=THUDM/CogVideoX-5b \ --finetune_ckpt_path=finetrainers/cakeify-v0 \ --lora_out_path=cakeify_lora.safetensors ``` Script is adapted from https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py """ import argparse import torch from safetensors.torch import save_file from tqdm.auto import tqdm from diffusers import CogVideoXTransformer3DModel RANK = 64 CLAMP_QUANTILE = 0.99 # Comes from # https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py#L9 def extract_lora(diff, rank): # Important to use CUDA otherwise, very slow! if torch.cuda.is_available(): diff = diff.to("cuda") is_conv2d = len(diff.shape) == 4 kernel_size = None if not is_conv2d else diff.size()[2:4] is_conv2d_3x3 = is_conv2d and kernel_size != (1, 1) out_dim, in_dim = diff.size()[0:2] rank = min(rank, in_dim, out_dim) if is_conv2d: if is_conv2d_3x3: diff = diff.flatten(start_dim=1) else: diff = diff.squeeze() U, S, Vh = torch.linalg.svd(diff.float()) U = U[:, :rank] S = S[:rank] U = U @ torch.diag(S) Vh = Vh[:rank, :] dist = torch.cat([U.flatten(), Vh.flatten()]) hi_val = torch.quantile(dist, CLAMP_QUANTILE) low_val = -hi_val U = U.clamp(low_val, hi_val) Vh = Vh.clamp(low_val, hi_val) if is_conv2d: U = U.reshape(out_dim, rank, 1, 1) Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) return (U.cpu(), Vh.cpu()) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--base_ckpt_path", default=None, type=str, required=True, help="Base checkpoint path from which the model was finetuned. Can be a model ID on the Hub.", ) parser.add_argument( "--base_subfolder", default="transformer", type=str, help="subfolder to load the base checkpoint from if any.", ) parser.add_argument( "--finetune_ckpt_path", default=None, type=str, required=True, help="Fully fine-tuned checkpoint path. Can be a model ID on the Hub.", ) parser.add_argument( "--finetune_subfolder", default=None, type=str, help="subfolder to load the fulle finetuned checkpoint from if any.", ) parser.add_argument("--rank", default=64, type=int) parser.add_argument("--lora_out_path", default=None, type=str, required=True) args = parser.parse_args() if not args.lora_out_path.endswith(".safetensors"): raise ValueError("`lora_out_path` must end with `.safetensors`.") return args @torch.no_grad() def main(args): model_finetuned = CogVideoXTransformer3DModel.from_pretrained( args.finetune_ckpt_path, subfolder=args.finetune_subfolder, torch_dtype=torch.bfloat16 ) state_dict_ft = model_finetuned.state_dict() # Change the `subfolder` as needed. base_model = CogVideoXTransformer3DModel.from_pretrained( args.base_ckpt_path, subfolder=args.base_subfolder, torch_dtype=torch.bfloat16 ) state_dict = base_model.state_dict() output_dict = {} for k in tqdm(state_dict, desc="Extracting LoRA..."): original_param = state_dict[k] finetuned_param = state_dict_ft[k] if len(original_param.shape) >= 2: diff = finetuned_param.float() - original_param.float() out = extract_lora(diff, RANK) name = k if name.endswith(".weight"): name = name[: -len(".weight")] down_key = "{}.lora_A.weight".format(name) up_key = "{}.lora_B.weight".format(name) output_dict[up_key] = out[0].contiguous().to(finetuned_param.dtype) output_dict[down_key] = out[1].contiguous().to(finetuned_param.dtype) prefix = "transformer" if "transformer" in base_model.__class__.__name__.lower() else "unet" output_dict = {f"{prefix}.{k}": v for k, v in output_dict.items()} save_file(output_dict, args.lora_out_path) print(f"LoRA saved and it contains {len(output_dict)} keys.") if __name__ == "__main__": args = parse_args() main(args)