# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from diffusers import AutoencoderKLMochi from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class AutoencoderKLMochiTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKLMochi main_input_name = "sample" base_precision = 1e-2 def get_autoencoder_kl_mochi_config(self): return { "in_channels": 15, "out_channels": 3, "latent_channels": 4, "encoder_block_out_channels": (32, 32, 32, 32), "decoder_block_out_channels": (32, 32, 32, 32), "layers_per_block": (1, 1, 1, 1, 1), "act_fn": "silu", "scaling_factor": 1, } @property def dummy_input(self): batch_size = 2 num_frames = 7 num_channels = 3 sizes = (16, 16) image = floats_tensor((batch_size, num_channels, num_frames) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 7, 16, 16) @property def output_shape(self): return (3, 7, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = self.get_autoencoder_kl_mochi_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = { "MochiDecoder3D", "MochiDownBlock3D", "MochiEncoder3D", "MochiMidBlock3D", "MochiUpBlock3D", } super().test_gradient_checkpointing_is_applied(expected_set=expected_set) @unittest.skip("Unsupported test.") def test_forward_with_norm_groups(self): """ tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_forward_with_norm_groups - TypeError: AutoencoderKLMochi.__init__() got an unexpected keyword argument 'norm_num_groups' """ pass @unittest.skip("Unsupported test.") def test_model_parallelism(self): """ tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence - RuntimeError: values expected sparse tensor layout but got Strided """ pass @unittest.skip("Unsupported test.") def test_outputs_equivalence(self): """ tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_outputs_equivalence - RuntimeError: values expected sparse tensor layout but got Strided """ pass @unittest.skip("Unsupported test.") def test_sharded_checkpoints_device_map(self): """ tests/models/autoencoders/test_models_autoencoder_mochi.py::AutoencoderKLMochiTests::test_sharded_checkpoints_device_map - RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:5! """