import gc import unittest import torch from diffusers import ( SanaTransformer2DModel, ) from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, require_torch_accelerator, torch_device, ) enable_full_determinism() @require_torch_accelerator class SanaTransformer2DModelSingleFileTests(unittest.TestCase): model_class = SanaTransformer2DModel ckpt_path = ( "https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/checkpoints/Sana_1600M_1024px.pth" ) alternate_keys_ckpt_paths = [ "https://huggingface.co/Efficient-Large-Model/Sana_1600M_1024px/blob/main/checkpoints/Sana_1600M_1024px.pth" ] repo_id = "Efficient-Large-Model/Sana_1600M_1024px_diffusers" def setUp(self): super().setUp() gc.collect() backend_empty_cache(torch_device) def tearDown(self): super().tearDown() gc.collect() backend_empty_cache(torch_device) def test_single_file_components(self): model = self.model_class.from_pretrained(self.repo_id, subfolder="transformer") model_single_file = self.model_class.from_single_file(self.ckpt_path) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert model.config[param_name] == param_value, ( f"{param_name} differs between single file loading and pretrained loading" ) def test_checkpoint_loading(self): for ckpt_path in self.alternate_keys_ckpt_paths: torch.cuda.empty_cache() model = self.model_class.from_single_file(ckpt_path) del model gc.collect() torch.cuda.empty_cache()