# ControlNet [ControlNet](https://huggingface.co/papers/2302.05543) is an adapter that enables controllable generation such as generating an image of a cat in a *specific pose* or following the lines in a sketch of a *specific* cat. It works by adding a smaller network of "zero convolution" layers and progressively training these to avoid disrupting with the original model. The original model parameters are frozen to avoid retraining it. A ControlNet is conditioned on extra visual information or "structural controls" (canny edge, depth maps, human pose, etc.) that can be combined with text prompts to generate images that are guided by the visual input. > [!TIP] > ControlNets are available to many models such as [Flux](../api/pipelines/controlnet_flux), [Hunyuan-DiT](../api/pipelines/controlnet_hunyuandit), [Stable Diffusion 3](../api/pipelines/controlnet_sd3), and more. The examples in this guide use Flux and Stable Diffusion XL. Load a ControlNet conditioned on a specific control, such as canny edge, and pass it to the pipeline in [`~DiffusionPipeline.from_pretrained`]. Generate a canny image with [opencv-python](https://github.com/opencv/opencv-python). ```py import cv2 import numpy as np from PIL import Image from diffusers.utils import load_image original_image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" ) image = np.array(original_image) low_threshold = 100 high_threshold = 200 image = cv2.Canny(image, low_threshold, high_threshold) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) canny_image = Image.fromarray(image) ``` Pass the canny image to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control. ```py import torch from diffusers.utils import load_image from diffusers import FluxControlNetPipeline, FluxControlNetModel controlnet = FluxControlNetModel.from_pretrained( "InstantX/FLUX.1-dev-Controlnet-Canny", torch_dtype=torch.bfloat16 ) pipeline = FluxControlNetPipeline.from_pretrained( "black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16 ).to("cuda") prompt = """ A photorealistic overhead image of a cat reclining sideways in a flamingo pool floatie holding a margarita. The cat is floating leisurely in the pool and completely relaxed and happy. """ pipeline( prompt, control_image=canny_image, controlnet_conditioning_scale=0.5, num_inference_steps=50, guidance_scale=3.5, ).images[0] ```
Generated image (prompt only)
original image
Control image (Canny edges)
canny image
Generated image (ControlNet + prompt)
generated image
Generate a depth map with a depth estimation pipeline from Transformers. ```py import torch import numpy as np from PIL import Image from transformers import DPTImageProcessor, DPTForDepthEstimation from diffusers import ControlNetModel, StableDiffusionXLControlNetImg2ImgPipeline, AutoencoderKL from diffusers.utils import load_image depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas") def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") with torch.no_grad(), torch.autocast("cuda"): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image depth_image = get_depth_map(image) ``` Pass the depth map to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control. ```py controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-depth-sdxl-1.0-small", torch_dtype=torch.float16, ) vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipeline = StableDiffusionXLControlNetImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, torch_dtype=torch.float16, ).to("cuda") prompt = """ A photorealistic overhead image of a cat reclining sideways in a flamingo pool floatie holding a margarita. The cat is floating leisurely in the pool and completely relaxed and happy. """ image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" ).resize((1024, 1024)) controlnet_conditioning_scale = 0.5 pipeline( prompt, image=image, control_image=depth_image, controlnet_conditioning_scale=controlnet_conditioning_scale, strength=0.99, num_inference_steps=100, ).images[0] ```
Generated image (prompt only)
original image
Control image (Canny edges)
depth map
Generated image (ControlNet + prompt)
generated image
Generate a mask image and convert it to a tensor to mark the pixels in the original image as masked if the corresponding pixel in the mask image is over a certain threshold. ```py import cv2 import torch import numpy as np from PIL import Image from diffusers.utils import load_image from diffusers import StableDiffusionXLControlNetInpaintPipeline, ControlNetModel init_image = load_image( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/non-enhanced-prompt.png" ) init_image = init_image.resize((1024, 1024)) mask_image = load_image( "/content/cat_mask.png" ) mask_image = mask_image.resize((1024, 1024)) def make_canny_condition(image): image = np.array(image) image = cv2.Canny(image, 100, 200) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) return image control_image = make_canny_condition(init_image) ``` Pass the mask and control image to the pipeline. Use the `controlnet_conditioning_scale` parameter to determine how much weight to assign to the control. ```py controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) pipeline = StableDiffusionXLControlNetInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 ) pipeline( "a cute and fluffy bunny rabbit", num_inference_steps=100, strength=0.99, controlnet_conditioning_scale=0.5, image=init_image, mask_image=mask_image, control_image=control_image, ).images[0] ```
Generated image (prompt only)
original image
Control image (Canny edges)
mask image
Generated image (ControlNet + prompt)
generated image
## Multi-ControlNet You can compose multiple ControlNet conditionings, such as canny image and a depth map, to create a *MultiControlNet*. For the best rersults, you should mask conditionings so they don't overlap and experiment with different `controlnet_conditioning_scale` parameters to adjust how much weight is assigned to each control input. The example below composes a canny image and depth map. Pass the ControlNets as a list to the pipeline and resize the images to the expected input size. ```py import torch from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL controlnets = [ ControlNetModel.from_pretrained( "diffusers/controlnet-depth-sdxl-1.0-small", torch_dtype=torch.float16 ), ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16, ), ] vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnets, vae=vae, torch_dtype=torch.float16 ).to("cuda") prompt = """ a relaxed rabbit sitting on a striped towel next to a pool with a tropical drink nearby, bright sunny day, vacation scene, 35mm photograph, film, professional, 4k, highly detailed """ negative_prompt = "lowres, bad anatomy, worst quality, low quality, deformed, ugly" images = [canny_image.resize((1024, 1024)), depth_image.resize((1024, 1024))] pipeline( prompt, negative_prompt=negative_prompt, image=images, num_inference_steps=100, controlnet_conditioning_scale=[0.5, 0.5], strength=0.7, ).images[0] ```
Generated image (prompt only)
canny image
Control image (Canny edges)
depth map
Generated image (ControlNet + prompt)
generated image
## guess_mode [Guess mode](https://github.com/lllyasviel/ControlNet/discussions/188) generates an image from **only** the control input (canny edge, depth map, pose, etc.) and without guidance from a prompt. It adjusts the scale of the ControlNet's output residuals by a fixed ratio depending on block depth. The earlier `DownBlock` is only scaled by `0.1` and the `MidBlock` is fully scaled by `1.0`. ```py import torch from diffusers.utils import load_iamge from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-canny-sdxl-1.0", torch_dtype=torch.float16 ) pipeline = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, torch_dtype=torch.float16 ).to("cuda") canny_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/canny-cat.png") pipeline( "", image=canny_image, guess_mode=True ).images[0] ```
Control image (Canny edges)
canny image
Generated image (Guess mode)
generated image