Spaces:
Running
on
Zero
Running
on
Zero
# dream_app.py | |
import torch | |
import numpy as np | |
import gradio as gr | |
import spaces # Ensure spaces is installed if needed for GPU decorator | |
import torch.nn.functional as F | |
from transformers import AutoTokenizer, AutoModel, AutoConfig | |
import time | |
import re | |
from typing import List, Dict, Tuple, Optional, Any # Added Any | |
import torch.distributions as dists # Added import | |
import traceback # For better error printing | |
# --- START: Copied Helper functions from generation_utils.py --- | |
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens] | |
def top_p_logits(logits, top_p=None): | |
""" Applies top-p filtering to logits. """ | |
if top_p is None or top_p >= 1.0: | |
return logits | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() | |
sorted_indices_to_remove[..., 0] = 0 | |
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device) | |
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove) | |
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min) | |
return logits | |
def top_k_logits(logits, top_k=None): | |
""" Applies top-k filtering to logits. """ | |
if top_k is None or top_k <= 0: | |
return logits | |
top_k = min(top_k, logits.size(-1)) | |
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] | |
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min) | |
return logits | |
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False): | |
""" Samples tokens based on logits and calculates confidence. """ | |
if temperature > 0: | |
safe_temp = max(temperature, 1e-6) | |
logits = logits / safe_temp | |
if top_p is not None and 0.0 < top_p < 1.0: | |
logits = top_p_logits(logits, top_p) | |
if top_k is not None and top_k > 0: | |
logits = top_k_logits(logits, top_k) | |
is_all_neg_inf = torch.all(logits <= torch.finfo(logits.dtype).min, dim=-1, keepdim=True) | |
if torch.any(is_all_neg_inf): | |
uniform_logits = torch.zeros_like(logits) | |
logits = torch.where(is_all_neg_inf, uniform_logits, logits) | |
probs = torch.softmax(logits, dim=-1) | |
probs = torch.clamp(probs, min=0.0) | |
prob_sum = probs.sum(dim=-1, keepdim=True) | |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=probs.device, dtype=probs.dtype)) | |
probs = probs / safe_prob_sum | |
probs = torch.nan_to_num(probs, nan=0.0) | |
if temperature > 0: | |
try: | |
x0 = dists.Categorical(probs=probs).sample() | |
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1) | |
except Exception as e: | |
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.") | |
confidence, x0 = probs.max(dim=-1) | |
else: | |
confidence, x0 = probs.max(dim=-1) | |
if margin_confidence: | |
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True) | |
top1_probs = sorted_probs[..., 0] | |
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs | |
confidence = top1_probs - top2_probs | |
elif neg_entropy: # Use elif to avoid calculating entropy if margin_confidence was True | |
epsilon = 1e-10 | |
log_probs = torch.log(probs + epsilon) | |
confidence = torch.sum(probs * log_probs, dim=-1) # Negative entropy | |
# Else: confidence is just the probability of the sampled token if temperature > 0, or max prob otherwise | |
confidence = torch.nan_to_num(confidence, nan=0.0) | |
return confidence, x0 | |
# --- END: Copied Helper functions --- | |
# --- Model Loading and Constants --- | |
# Load model configuration to get special token IDs | |
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True) | |
model_path = "Dream-org/Dream-v0-Instruct-7B" | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using device: {device}") | |
print("Loading tokenizer...") | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
print("Loading model...") | |
model = AutoModel.from_pretrained( | |
model_path, | |
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, | |
trust_remote_code=True, | |
attn_implementation="sdpa" # Explicitly request SDPA | |
) | |
model = model.to(device).eval() | |
print("Model loaded.") | |
MASK_TOKEN = tokenizer.mask_token | |
MASK_ID = tokenizer.mask_token_id | |
PAD_ID = tokenizer.pad_token_id | |
EOS_ID = tokenizer.eos_token_id | |
if MASK_ID is None: | |
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.") | |
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID} | |
try: | |
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>") | |
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>") | |
SPECIAL_TOKEN_IDS.add(IM_START_ID) | |
SPECIAL_TOKEN_IDS.add(IM_END_ID) | |
except KeyError: | |
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.") | |
IM_START_ID = None | |
IM_END_ID = None | |
# --- Helper Functions --- | |
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]: | |
""" Parses word constraints. """ | |
constraints = {} | |
if not constraints_text: return constraints | |
parts = constraints_text.split(',') | |
for part in parts: | |
part = part.strip() | |
if ':' not in part: continue | |
pos_str, word = part.split(':', 1) | |
try: | |
pos = int(pos_str.strip()) | |
word = word.strip() | |
token_ids = [] | |
if word: | |
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word | |
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False) | |
if token_ids and pos >= 0: constraints[pos] = token_ids | |
elif not token_ids and word: print(f"Warning: Could not tokenize constraint word '{word}'") | |
except ValueError: print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'") | |
except Exception as e: print(f"Warning: Error processing constraint '{part}': {e}") | |
return constraints | |
# Removed format_chat_history as the state will now be in the correct format | |
def apply_constraints_to_state( | |
x: torch.Tensor, | |
prompt_length: int, | |
total_length: int, | |
parsed_constraints: Dict[int, List[int]], | |
current_step: Optional[int] = None | |
) -> torch.Tensor: | |
""" Applies constraints directly to the state tensor `x`. """ | |
modified_x = x.clone() | |
for rel_pos, word_token_ids in parsed_constraints.items(): | |
abs_start_pos = prompt_length + rel_pos | |
abs_end_pos = abs_start_pos + len(word_token_ids) | |
if abs_start_pos < total_length and abs_end_pos <= total_length: | |
try: | |
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device) | |
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor | |
except IndexError: print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.") | |
except Exception as e: print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}") | |
return modified_x | |
# --- Core Generation Logic with Live Visualization --- | |
def generate_dream_response( | |
history_dict_list: List[Dict[str, str]], # Now expects list of dicts | |
gen_length: int, | |
steps: int, | |
constraints_text: str, | |
temperature: float, | |
top_p: Optional[float], | |
top_k: Optional[int], | |
alg: str, | |
alg_temp: Optional[float], | |
visualization_delay: float | |
) -> List[Tuple[str, str]]: | |
""" Generates text step-by-step and yields visualization states live. """ | |
if not history_dict_list or history_dict_list[-1]['role'] != 'user': | |
# Handle cases where history is empty or doesn't end with user message | |
# This check might be redundant if add_user_message handles it, but good for safety. | |
yield history_dict_list, [("No user message found.", "red")], "" | |
return | |
# --- 1. Preparation --- | |
parsed_constraints = parse_constraints(constraints_text) | |
# Prepare history for the model template (don't include the empty assistant msg yet) | |
history_for_template = history_dict_list # Already in list-of-dicts format | |
try: | |
inputs = tokenizer.apply_chat_template( | |
history_for_template, # Pass the list of dicts directly | |
return_tensors="pt", | |
return_dict=True, | |
add_generation_prompt=True # Crucial: Adds the '<|im_start|>assistant\n' turn | |
) | |
input_ids = inputs.input_ids.to(device) | |
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids) | |
prompt_length = input_ids.shape[1] | |
except Exception as e: | |
print(f"Error applying chat template: {e}") | |
traceback.print_exc() | |
yield history_dict_list, [("Error preparing input.", "red")], "" | |
return | |
eps = 1e-3 | |
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None | |
top_k_val = top_k if top_k is not None and top_k > 0 else None | |
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None | |
# --- 2. Initialize Generation State --- | |
total_length = prompt_length + gen_length | |
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device) | |
x = torch.cat((input_ids, initial_generation_part), dim=1) | |
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device) | |
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) | |
attention_mask_for_model = full_attention_mask_long.to(model.dtype) | |
large_neg_val = torch.finfo(model.dtype).min | |
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val | |
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # [B, 1, 1, N] | |
timesteps = torch.linspace(1, eps, steps + 1, device=device) | |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1) | |
# --- 3. Visualization & History Setup --- | |
previous_tokens_vis = None | |
final_response_text = "" | |
# The history_dict_list is the state we update and yield for the chatbot UI | |
# Add the empty assistant message placeholder *to the history state* now | |
history_dict_list.append({"role": "assistant", "content": ""}) | |
# --- 4. Initial Yield (Masked State) --- | |
initial_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data_initial = [] | |
for tok_id in initial_generated_tokens.tolist(): | |
display_token = MASK_TOKEN | |
color = "#444444" | |
vis_data_initial.append((display_token, color)) | |
previous_tokens_vis = initial_generated_tokens | |
# Yield the history (which now includes the empty assistant turn) | |
yield history_dict_list, vis_data_initial, "" | |
time.sleep(visualization_delay) | |
# --- 5. Step-by-Step Diffusion Loop --- | |
try: | |
start_time = time.time() | |
for i in range(steps): | |
mask_index = (x == MASK_ID) | |
if not mask_index.any(): | |
print(f"No mask tokens left at step {i}. Stopping early.") | |
break | |
outputs = model( | |
input_ids=x, | |
attention_mask=attention_mask_for_model, | |
position_ids=None, use_cache=False, return_dict=True | |
) | |
logits = outputs.logits | |
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) | |
mask_logits = logits[mask_index] | |
if mask_logits.numel() == 0: | |
print(f"No masked tokens found for logit selection at step {i}. Stopping.") | |
break | |
t = timesteps[i] | |
s = timesteps[i + 1] | |
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long) | |
# [Keep sampling logic the same - 'origin' and confidence-based] | |
if alg == 'origin': | |
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0 | |
num_masked = mask_logits.shape[0] | |
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer | |
logits_to_sample = mask_logits[transfer_indices_relative] | |
if logits_to_sample.numel() > 0: | |
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val) | |
if transfer_indices_relative.sum() == sampled_tokens.numel(): # Basic check | |
x_new_masked_part[transfer_indices_relative] = sampled_tokens | |
else: print(f"Warning step {i} (origin): Mismatch transfer indices and sampled tokens.") | |
else: # Confidence-based | |
use_margin = (alg == 'topk_margin') | |
use_entropy = (alg == 'entropy') | |
confidence, x0_candidates = sample_tokens(mask_logits, temperature=temperature, top_p=top_p_val, top_k=top_k_val, margin_confidence=use_margin, neg_entropy=use_entropy) | |
num_mask_token = mask_logits.shape[0] | |
target_num_revealed_float = num_mask_token * (1.0 - s / t) | |
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token | |
if number_transfer_tokens > 0: | |
num_samples = min(number_transfer_tokens, num_mask_token) | |
if num_samples > 0: | |
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Init empty | |
if alg_temp_val is None or alg_temp_val <= 0: # Top-k | |
sort_metric = confidence | |
k_topk = min(num_samples, sort_metric.numel()) | |
if k_topk > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk) | |
else: # Sample based on temp | |
if confidence.numel() > 0: | |
conf_probs = confidence / alg_temp_val | |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9) | |
conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) | |
conf_probs = F.softmax(conf_probs, dim=-1) | |
conf_probs = torch.clamp(conf_probs, min=0.0) | |
conf_probs = torch.nan_to_num(conf_probs, nan=0.0) | |
prob_sum = conf_probs.sum() | |
target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype) | |
if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0: | |
safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype)) | |
conf_probs = conf_probs / safe_prob_sum | |
final_prob_sum_check = conf_probs.sum() | |
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4): | |
try: transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False) | |
except RuntimeError as e: | |
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.") | |
sort_metric = confidence | |
k_multinomial_fallback = min(num_samples, sort_metric.numel()) | |
if k_multinomial_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback) | |
else: # Fallback if probs invalid for multinomial | |
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.") | |
sort_metric = confidence | |
k_multinomial_fallback = min(num_samples, sort_metric.numel()) | |
if k_multinomial_fallback > 0: _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback) | |
# Apply transfer | |
if transfer_indices_relative.numel() > 0: | |
if x0_candidates.numel() > 0 and transfer_indices_relative.max() < x0_candidates.shape[0]: | |
if transfer_indices_relative.max() < x_new_masked_part.shape[0]: | |
x_new_masked_part[transfer_indices_relative] = x0_candidates[transfer_indices_relative].clone() | |
else: print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.") | |
else: print(f"Warning step {i}: transfer_indices out of bounds for x0_candidates or x0_candidates empty.") | |
x[mask_index] = x_new_masked_part | |
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i) | |
# --- Yield Visualization & Update History --- | |
current_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data = [] | |
# [Visualization formatting logic remains the same] | |
for j in range(gen_length): | |
current_tok_id = current_generated_tokens[j].item() | |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID | |
try: | |
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False) | |
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token | |
except Exception: display_token = f"[ID:{current_tok_id}]" | |
color = None; token_to_display = display_token | |
if current_tok_id == MASK_ID: color = "#444444" | |
elif previous_tok_id == MASK_ID: color = "#66CC66" | |
else: color = "#6699CC" | |
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID) | |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None | |
if token_to_display: vis_data.append((token_to_display, color)) | |
previous_tokens_vis = current_generated_tokens | |
intermediate_response_tokens = x[0, prompt_length:] | |
intermediate_response_text = tokenizer.decode( | |
intermediate_response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
).strip() | |
# --- Update the *last* message in history_dict_list --- | |
history_dict_list[-1]['content'] = intermediate_response_text | |
# Yield the updated history list (for chatbot UI), vis data, and response text | |
yield history_dict_list, vis_data, intermediate_response_text | |
time.sleep(visualization_delay) | |
end_time = time.time() | |
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.") | |
# --- 6. Final Processing & Yield --- | |
final_sequence = x[0] | |
response_tokens = final_sequence[prompt_length:] | |
final_response_text = tokenizer.decode( | |
response_tokens, skip_special_tokens=True, clean_up_tokenization_spaces=True | |
).strip() | |
# Ensure the final text is in the history object before the last yield | |
history_dict_list[-1]['content'] = final_response_text | |
final_generated_tokens = x[0, prompt_length:].cpu() | |
vis_data_final = [] | |
# [Final visualization formatting logic remains the same] | |
for j in range(gen_length): | |
current_tok_id = final_generated_tokens[j].item() | |
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID | |
try: | |
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False) | |
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token | |
except Exception: display_token = f"[ID:{current_tok_id}]" | |
color = None; token_to_display = display_token | |
if current_tok_id == MASK_ID: color = "#444444" | |
elif previous_tok_id == MASK_ID: color = "#66CC66" | |
else: color = "#6699CC" | |
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or (EOS_ID is not None and current_tok_id == EOS_ID) | |
if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None | |
if token_to_display: vis_data_final.append((token_to_display, color)) | |
yield history_dict_list, vis_data_final, final_response_text | |
print("Visualization streaming complete.") | |
except Exception as e: | |
print(f"Error during generation or processing: {e}") | |
traceback.print_exc() | |
# Attempt to add error message to history if possible | |
if history_dict_list and history_dict_list[-1]['role'] == 'assistant': | |
history_dict_list[-1]['content'] = f"Error: {e}" | |
yield history_dict_list, [("Error during generation.", "red")], f"Error: {e}" # Also show error in text box | |
return | |
# --- Gradio UI --- | |
css = ''' | |
.category-legend{display:none} | |
''' | |
def create_chatbot_demo(): | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo") | |
gr.Markdown( | |
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] " | |
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]" | |
) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_ui = gr.Chatbot( | |
label="Conversation", | |
height=500, | |
show_copy_button=True, | |
bubble_full_width=False, | |
value=[], # Initialize empty | |
type="messages" # Crucial: Use the messages format | |
) | |
with gr.Group(): | |
with gr.Row(): | |
user_input = gr.Textbox( | |
label="Your Message", placeholder="Type your message here...", | |
scale=7, autofocus=True, show_label=False, container=False | |
) | |
send_btn = gr.Button("Send", scale=1, variant="primary") | |
constraints_input = gr.Textbox( | |
label="Word Constraints (Optional)", | |
info="Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon'", | |
placeholder="0:Hello, 10:world", value="" | |
) | |
with gr.Column(scale=2): | |
output_vis = gr.HighlightedText( | |
label="Denoising Process Visualization", combine_adjacent=False, | |
show_legend=True, interactive=False | |
) | |
response_text_display = gr.Textbox( | |
label="Current/Final Response", interactive=False, lines=5, visible=False | |
) | |
# [Keep Accordion with Generation Settings the same] | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens") | |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)") | |
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Conf Algs)") | |
with gr.Row(): | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)") | |
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)") | |
with gr.Row(): | |
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='origin', label="Remasking Strategy") | |
with gr.Row(): | |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.0, step=0.01, label="Visualization Delay (s)") | |
clear_btn = gr.Button("Clear Conversation") | |
# --- Event Handlers --- | |
# User function: Appends user message to the history (list of dicts) | |
def add_user_message(message: str, history: List[Dict[str, str]]): | |
if not message.strip(): | |
gr.Warning("Please enter a message.") | |
return history, "" # Return unchanged history, empty input | |
history.append({"role": "user", "content": message}) | |
# Return updated history for chatbot UI, and clear input box | |
return history, "" | |
# Bot function (now the generator) | |
# Inputs: Chatbot history (list of dicts), generation params | |
# Outputs: Chatbot history (updated list of dicts), visualization, response text | |
generation_inputs = [ | |
chatbot_ui, # Pass chatbot state directly (list of dicts) | |
gen_length, steps, constraints_input, | |
temperature, top_p, top_k, remasking_strategy, alg_temp, | |
visualization_delay | |
] | |
generation_outputs = [chatbot_ui, output_vis, response_text_display] | |
# --- Connect UI elements --- | |
# Textbox Submission (Enter key) | |
submit_listener = user_input.submit( | |
fn=add_user_message, | |
inputs=[user_input, chatbot_ui], | |
outputs=[chatbot_ui, user_input] # Update chatbot UI and clear input | |
).then( | |
fn=generate_dream_response, | |
inputs=generation_inputs, | |
outputs=generation_outputs, | |
show_progress="hidden" # Hide default progress bar | |
) | |
# Send Button Click | |
click_listener = send_btn.click( | |
fn=add_user_message, | |
inputs=[user_input, chatbot_ui], | |
outputs=[chatbot_ui, user_input] # Update chatbot UI and clear input | |
).then( | |
fn=generate_dream_response, | |
inputs=generation_inputs, | |
outputs=generation_outputs, | |
show_progress="hidden" | |
) | |
# Clear Button Action | |
clear_btn.click( | |
lambda: ([], [], ""), # Function to return empty values | |
inputs=[], | |
outputs=[chatbot_ui, output_vis, response_text_display], # Clear chatbot, vis, text | |
queue=False # No need to queue clearing usually | |
) | |
return demo | |
# --- Launch --- | |
if __name__ == "__main__": | |
demo = create_chatbot_demo() | |
demo.queue().launch(debug=True, share=False) |