multimodalart HF Staff commited on
Commit
1321d2f
·
verified ·
1 Parent(s): 2491cbe

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -128
app.py CHANGED
@@ -239,7 +239,7 @@ def apply_constraints_to_state(
239
  @spaces.GPU # Decorator for Hugging Face Spaces GPU usage
240
  @torch.no_grad() # Ensure no gradients are computed during generation
241
  def generate_dream_response(
242
- history: List[List[Optional[str]]], # Receives the latest state from _chat_history_store
243
  gen_length: int,
244
  steps: int,
245
  constraints_text: str,
@@ -252,12 +252,16 @@ def generate_dream_response(
252
  ) -> List[Tuple[str, str]]:
253
  """ Generates text step-by-step and yields visualization states live. """
254
 
255
- if not history or history[-1][0] is None: # Check if last user message is None or missing
256
- yield history, [("Internal Error: History state invalid.", "red")], ""
 
 
 
 
257
  return
258
 
259
  # --- 1. Preparation ---
260
- # History already contains the latest user message and None for the bot response
261
  messages_for_template = format_chat_history(history)
262
  parsed_constraints = parse_constraints(constraints_text)
263
 
@@ -266,15 +270,13 @@ def generate_dream_response(
266
  messages_for_template,
267
  return_tensors="pt",
268
  return_dict=True,
269
- add_generation_prompt=True # Creates the '<|im_start|>assistant\n' prompt
270
  )
271
  input_ids = inputs.input_ids.to(device)
272
- # Ensure prompt_attention_mask is also on the correct device and handle missing mask
273
  prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
274
  prompt_length = input_ids.shape[1]
275
  except Exception as e:
276
  print(f"Error applying chat template: {e}")
277
- # Yield current history (with None), error message, empty text
278
  yield history, [("Error preparing input.", "red")], ""
279
  return
280
 
@@ -288,38 +290,33 @@ def generate_dream_response(
288
  initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
289
  x = torch.cat((input_ids, initial_generation_part), dim=1)
290
 
291
- # Prepare attention mask for SDPA (float format)
292
- generation_attention_mask = torch.ones((1, gen_length), dtype=prompt_attention_mask.dtype, device=device) # Match dtype
293
- full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) # Shape [B, N]
294
 
295
- attention_mask_for_model = full_attention_mask_long.to(model.dtype) # Convert to model's float dtype
296
  large_neg_val = torch.finfo(model.dtype).min
297
  attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
298
- attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2) # Shape [B, 1, 1, N]
299
 
300
- # Timesteps
301
  timesteps = torch.linspace(1, eps, steps + 1, device=device)
302
-
303
- # Apply initial constraints
304
  x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
305
 
306
  # --- 3. Visualization Setup ---
307
  previous_tokens_vis = None
308
  final_response_text = ""
309
- # Work on a copy of the history list received as input
310
- history_copy = [list(item) for item in history]
311
 
312
  # --- 4. Initial Yield (Masked State) ---
313
  initial_generated_tokens = x[0, prompt_length:].cpu()
314
  vis_data_initial = []
315
  for tok_id in initial_generated_tokens.tolist():
316
  display_token = MASK_TOKEN
317
- color = "#444444" # Dark Gray for masks
318
  vis_data_initial.append((display_token, color))
319
 
320
  previous_tokens_vis = initial_generated_tokens
321
- # Yield the initial history copy (with None placeholder), initial vis, empty text
322
- yield history_copy, vis_data_initial, ""
323
  time.sleep(visualization_delay)
324
 
325
  # --- 5. Step-by-Step Diffusion Loop ---
@@ -334,19 +331,15 @@ def generate_dream_response(
334
  # --- Model Forward Pass ---
335
  outputs = model(
336
  input_ids=x,
337
- attention_mask=attention_mask_for_model, # Pass the [B, 1, 1, N] float mask
338
- position_ids=None, # Let model compute default positions
339
  use_cache=False,
340
  return_dict=True
341
  )
342
  logits = outputs.logits
 
343
 
344
- # Align logits with the token positions they predict (logits[t] predicts token[t+1])
345
- # Shift left, effectively aligning logits[t] with inputs[t]
346
- logits = torch.cat([logits[:, :1], logits[:, :-1]], dim=1)
347
-
348
- # Select logits for masked positions
349
- mask_logits = logits[mask_index] # Shape [num_masked_tokens, V]
350
  if mask_logits.numel() == 0:
351
  print(f"No masked tokens found for logit selection at step {i}. Stopping.")
352
  break
@@ -354,9 +347,9 @@ def generate_dream_response(
354
  # --- Sampling / Remasking Logic ---
355
  t = timesteps[i]
356
  s = timesteps[i + 1]
357
- # Initialize the update tensor for masked positions with MASK_ID
358
  x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
359
 
 
360
  if alg == 'origin':
361
  p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
362
  num_masked = mask_logits.shape[0]
@@ -365,13 +358,11 @@ def generate_dream_response(
365
 
366
  if logits_to_sample.numel() > 0:
367
  _, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
368
- # Place sampled tokens into the correct positions within the masked part update
369
  x_new_masked_part[transfer_indices_relative] = sampled_tokens
370
 
371
- else: # Confidence-based algorithms ('maskgit_plus', 'topk_margin', 'entropy')
372
  use_margin = (alg == 'topk_margin')
373
  use_entropy = (alg == 'entropy')
374
- # Sample candidates and get confidence for all masked positions
375
  confidence, x0_candidates = sample_tokens(
376
  mask_logits,
377
  temperature=temperature,
@@ -382,129 +373,89 @@ def generate_dream_response(
382
  )
383
 
384
  num_mask_token = mask_logits.shape[0]
385
- # Calculate target number of tokens to reveal in this step
386
  target_num_revealed_float = num_mask_token * (1.0 - s / t)
387
  number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
388
 
389
  if number_transfer_tokens > 0:
390
- # Determine which tokens to reveal based on confidence
391
- num_samples = min(number_transfer_tokens, num_mask_token) # Ensure k <= num_mask_token
392
  if num_samples > 0:
393
- transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Initialize empty
394
- if alg_temp_val is None or alg_temp_val <= 0: # Use top-k confidence sorting
395
- # Sort by confidence (higher is better, except for entropy where lower is better)
396
  sort_metric = confidence if alg != 'entropy' else -confidence
397
- # Ensure k is not greater than the number of elements
398
  k_topk = min(num_samples, sort_metric.numel())
399
  if k_topk > 0:
400
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
401
 
402
  else: # Sample based on confidence temperature
403
- # Ensure confidence has elements before processing
404
  if confidence.numel() > 0:
405
  conf_probs = confidence / alg_temp_val
406
- # Handle potential inf/-inf before softmax, ensure non-negative probabilities
407
  conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
408
- # Clamp to prevent large positive values causing overflow in exp
409
- conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) # Softmax is invariant to shift
410
  conf_probs = F.softmax(conf_probs, dim=-1)
411
- conf_probs = torch.clamp(conf_probs, min=0.0) # Ensure non-negative
412
- conf_probs = torch.nan_to_num(conf_probs, nan=0.0) # Handle NaNs
413
 
414
- # Normalize probabilities if they don't sum to 1 (within tolerance)
415
  prob_sum = conf_probs.sum()
416
  target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
417
  if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
418
  safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
419
  conf_probs = conf_probs / safe_prob_sum
420
 
421
- # Check if probabilities are valid for multinomial sampling
422
  final_prob_sum_check = conf_probs.sum()
423
  if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
424
  try:
425
  transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
426
  except RuntimeError as e:
427
  print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
428
- # Fallback to top-k if multinomial fails
429
  sort_metric = confidence if alg != 'entropy' else -confidence
430
  k_multinomial_fallback = min(num_samples, sort_metric.numel())
431
  if k_multinomial_fallback > 0:
432
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
433
- else: # Handle cases where multinomial is not possible (e.g., bad probabilities)
434
  # print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.")
435
  sort_metric = confidence if alg != 'entropy' else -confidence
436
  k_multinomial_fallback = min(num_samples, sort_metric.numel())
437
  if k_multinomial_fallback > 0:
438
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
 
439
 
440
- # Apply the transfer using the selected indices, with safety checks
441
  if transfer_indices_relative.numel() > 0:
442
- # Bounds check before indexing
443
- max_cand_idx = x0_candidates.shape[0] - 1
444
- max_mask_idx = x_new_masked_part.shape[0] - 1
445
- valid_indices_mask = (transfer_indices_relative >= 0) & \
446
- (transfer_indices_relative <= max_cand_idx) & \
447
- (transfer_indices_relative <= max_mask_idx)
448
- valid_transfer_indices = transfer_indices_relative[valid_indices_mask]
449
-
450
  if valid_transfer_indices.numel() > 0:
451
- x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
452
- # else:
453
- # if transfer_indices_relative.numel() > 0: # Only warn if there were indices initially
454
- # print(f"Warning step {i}: No valid transfer indices after bounds check.")
455
-
456
 
457
- # Update the global state `x` only at the masked positions
458
  x[mask_index] = x_new_masked_part
459
-
460
- # --- Apply Constraints ---
461
- # Constraints should be applied *after* sampling/revealing tokens for the step
462
  x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
463
 
464
  # --- Yield Visualization ---
465
- current_generated_tokens = x[0, prompt_length:].cpu() # Get generated part, move to CPU
466
  vis_data = []
 
467
  for j in range(gen_length):
468
  current_tok_id = current_generated_tokens[j].item()
469
- # Ensure previous_tokens_vis exists and index is valid
470
  previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
471
-
472
  try:
473
- # Use replace='�' to handle potential bytes rendering issues in Gradio HighlightedText
474
  decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
475
  display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
476
- except Exception:
477
- display_token = f"[ID:{current_tok_id}]" # Fallback
478
-
479
- color = None
480
- token_to_display = display_token
481
-
482
- if current_tok_id == MASK_ID:
483
- color = "#444444" # Dark Gray for masks
484
- elif previous_tok_id == MASK_ID: # Token was just revealed
485
- color = "#66CC66" # Light Green
486
- else: # Token was already revealed
487
- color = "#6699CC" # Light Blue
488
-
489
- # Hide special tokens (PAD/EOS) if they were already revealed (LLaDA effect)
490
- # Ensure PAD_ID and EOS_ID are not None before checking
491
- should_hide = False
492
- if PAD_ID is not None and current_tok_id == PAD_ID: should_hide = True
493
- if EOS_ID is not None and current_tok_id == EOS_ID: should_hide = True
494
- # Special check: If PAD and EOS are the same, only hide if it's that ID
495
- if PAD_ID == EOS_ID and PAD_ID is not None and current_tok_id == PAD_ID: should_hide = True
496
-
497
- if should_hide and previous_tok_id == current_tok_id:
498
- token_to_display = "" # Hide by making empty
499
- color = None # No color for hidden
500
-
501
- if token_to_display: # Avoid adding empty strings if hiding
502
- vis_data.append((token_to_display, color))
503
-
504
- # Update previous state for the next iteration's color logic
505
  previous_tokens_vis = current_generated_tokens
506
 
507
- # Decode intermediate response text using the *current* state x
508
  intermediate_response_tokens = x[0, prompt_length:]
509
  intermediate_response_text = tokenizer.decode(
510
  intermediate_response_tokens,
@@ -512,13 +463,10 @@ def generate_dream_response(
512
  clean_up_tokenization_spaces=True
513
  ).strip()
514
 
515
- # Update the *copy* of the history with the intermediate text for display purposes
516
- if history_copy: # Ensure history_copy is not empty
517
- history_copy[-1][1] = intermediate_response_text # Update the None placeholder
518
-
519
- # Yield the updated history copy, current vis, and intermediate text
520
- yield history_copy, vis_data, intermediate_response_text
521
  time.sleep(visualization_delay)
 
522
 
523
  end_time = time.time()
524
  print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
@@ -532,45 +480,41 @@ def generate_dream_response(
532
  clean_up_tokenization_spaces=True
533
  ).strip()
534
 
535
- # Update the final history copy *definitively*
536
- if history_copy:
537
- history_copy[-1][1] = final_response_text
 
538
 
539
- # Format the final visualization state
540
  final_generated_tokens = x[0, prompt_length:].cpu()
541
  vis_data_final = []
 
542
  for j in range(gen_length):
543
  current_tok_id = final_generated_tokens[j].item()
544
  previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
545
  try:
546
  decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
547
  display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
548
- except Exception:
549
- display_token = f"[ID:{current_tok_id}]" # Fallback
550
- color = None
551
- token_to_display = display_token
552
  if current_tok_id == MASK_ID: color = "#444444"
553
  elif previous_tok_id == MASK_ID: color = "#66CC66"
554
  else: color = "#6699CC"
555
-
556
- should_hide = False
557
- if PAD_ID is not None and current_tok_id == PAD_ID: should_hide = True
558
- if EOS_ID is not None and current_tok_id == EOS_ID: should_hide = True
559
- if PAD_ID == EOS_ID and PAD_ID is not None and current_tok_id == PAD_ID: should_hide = True
560
-
561
- if should_hide and previous_tok_id == current_tok_id:
562
- token_to_display = ""; color = None
563
  if token_to_display: vis_data_final.append((token_to_display, color))
 
564
 
565
- # Yield the final history, final visualization, and final text
566
- yield history_copy, vis_data_final, final_response_text
567
  print("Visualization streaming complete.")
568
 
569
  except Exception as e:
570
- print(f"Error during generation or processing loop: {e}")
 
571
  traceback.print_exc()
572
- # Yield the history as it was before the error, error vis, empty text
573
- yield history_copy, [("Error during generation.", "red")], ""
574
  return
575
 
576
 
 
239
  @spaces.GPU # Decorator for Hugging Face Spaces GPU usage
240
  @torch.no_grad() # Ensure no gradients are computed during generation
241
  def generate_dream_response(
242
+ history: List[List[Optional[str]]], # Receives the list from _chat_history_store
243
  gen_length: int,
244
  steps: int,
245
  constraints_text: str,
 
252
  ) -> List[Tuple[str, str]]:
253
  """ Generates text step-by-step and yields visualization states live. """
254
 
255
+ # No history_copy needed, work directly on the input 'history' list
256
+ # which is a reference to the value in _chat_history_store
257
+
258
+ if not history or not history[-1][0]:
259
+ # Yield the original history back if there's no input
260
+ yield history, [("No input message found.", "red")], ""
261
  return
262
 
263
  # --- 1. Preparation ---
264
+ last_user_message = history[-1][0]
265
  messages_for_template = format_chat_history(history)
266
  parsed_constraints = parse_constraints(constraints_text)
267
 
 
270
  messages_for_template,
271
  return_tensors="pt",
272
  return_dict=True,
273
+ add_generation_prompt=True
274
  )
275
  input_ids = inputs.input_ids.to(device)
 
276
  prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
277
  prompt_length = input_ids.shape[1]
278
  except Exception as e:
279
  print(f"Error applying chat template: {e}")
 
280
  yield history, [("Error preparing input.", "red")], ""
281
  return
282
 
 
290
  initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
291
  x = torch.cat((input_ids, initial_generation_part), dim=1)
292
 
293
+ generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
294
+ full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1)
 
295
 
296
+ attention_mask_for_model = full_attention_mask_long.to(model.dtype)
297
  large_neg_val = torch.finfo(model.dtype).min
298
  attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
299
+ attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
300
 
 
301
  timesteps = torch.linspace(1, eps, steps + 1, device=device)
 
 
302
  x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
303
 
304
  # --- 3. Visualization Setup ---
305
  previous_tokens_vis = None
306
  final_response_text = ""
307
+ # history_copy removed
 
308
 
309
  # --- 4. Initial Yield (Masked State) ---
310
  initial_generated_tokens = x[0, prompt_length:].cpu()
311
  vis_data_initial = []
312
  for tok_id in initial_generated_tokens.tolist():
313
  display_token = MASK_TOKEN
314
+ color = "#444444"
315
  vis_data_initial.append((display_token, color))
316
 
317
  previous_tokens_vis = initial_generated_tokens
318
+ # Yield the current state of the history (which has None for the bot response)
319
+ yield history, vis_data_initial, ""
320
  time.sleep(visualization_delay)
321
 
322
  # --- 5. Step-by-Step Diffusion Loop ---
 
331
  # --- Model Forward Pass ---
332
  outputs = model(
333
  input_ids=x,
334
+ attention_mask=attention_mask_for_model,
335
+ position_ids=None,
336
  use_cache=False,
337
  return_dict=True
338
  )
339
  logits = outputs.logits
340
+ logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits
341
 
342
+ mask_logits = logits[mask_index]
 
 
 
 
 
343
  if mask_logits.numel() == 0:
344
  print(f"No masked tokens found for logit selection at step {i}. Stopping.")
345
  break
 
347
  # --- Sampling / Remasking Logic ---
348
  t = timesteps[i]
349
  s = timesteps[i + 1]
 
350
  x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
351
 
352
+ # [Keep sampling logic identical to previous correct version]
353
  if alg == 'origin':
354
  p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
355
  num_masked = mask_logits.shape[0]
 
358
 
359
  if logits_to_sample.numel() > 0:
360
  _, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
 
361
  x_new_masked_part[transfer_indices_relative] = sampled_tokens
362
 
363
+ else: # Confidence-based algorithms
364
  use_margin = (alg == 'topk_margin')
365
  use_entropy = (alg == 'entropy')
 
366
  confidence, x0_candidates = sample_tokens(
367
  mask_logits,
368
  temperature=temperature,
 
373
  )
374
 
375
  num_mask_token = mask_logits.shape[0]
 
376
  target_num_revealed_float = num_mask_token * (1.0 - s / t)
377
  number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
378
 
379
  if number_transfer_tokens > 0:
380
+ num_samples = min(number_transfer_tokens, num_mask_token)
 
381
  if num_samples > 0:
382
+ transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device) # Initialize
383
+ if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
 
384
  sort_metric = confidence if alg != 'entropy' else -confidence
 
385
  k_topk = min(num_samples, sort_metric.numel())
386
  if k_topk > 0:
387
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
388
 
389
  else: # Sample based on confidence temperature
 
390
  if confidence.numel() > 0:
391
  conf_probs = confidence / alg_temp_val
 
392
  conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9)
393
+ conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30)
 
394
  conf_probs = F.softmax(conf_probs, dim=-1)
395
+ conf_probs = torch.clamp(conf_probs, min=0.0)
396
+ conf_probs = torch.nan_to_num(conf_probs, nan=0.0)
397
 
 
398
  prob_sum = conf_probs.sum()
399
  target_sum_tensor = torch.tensor(1.0, device=device, dtype=prob_sum.dtype)
400
  if not torch.isclose(prob_sum, target_sum_tensor, atol=1e-4) and prob_sum > 0:
401
  safe_prob_sum = torch.max(prob_sum, torch.tensor(1e-12, device=device, dtype=prob_sum.dtype))
402
  conf_probs = conf_probs / safe_prob_sum
403
 
 
404
  final_prob_sum_check = conf_probs.sum()
405
  if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(final_prob_sum_check, target_sum_tensor, atol=1e-4):
406
  try:
407
  transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
408
  except RuntimeError as e:
409
  print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
 
410
  sort_metric = confidence if alg != 'entropy' else -confidence
411
  k_multinomial_fallback = min(num_samples, sort_metric.numel())
412
  if k_multinomial_fallback > 0:
413
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
414
+ else:
415
  # print(f"Warning step {i}: Invalid probabilities for multinomial sampling (sum={final_prob_sum_check:.4f}). Falling back to top-k.")
416
  sort_metric = confidence if alg != 'entropy' else -confidence
417
  k_multinomial_fallback = min(num_samples, sort_metric.numel())
418
  if k_multinomial_fallback > 0:
419
  _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
420
+ # else: # No confidence values to sample from, transfer_indices_relative remains empty
421
 
422
+ # Apply the transfer
423
  if transfer_indices_relative.numel() > 0:
424
+ valid_indices = transfer_indices_relative < x0_candidates.shape[0]
425
+ valid_transfer_indices = transfer_indices_relative[valid_indices]
 
 
 
 
 
 
426
  if valid_transfer_indices.numel() > 0:
427
+ if valid_transfer_indices.max() < x_new_masked_part.shape[0]:
428
+ x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
429
+ else:
430
+ print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")
431
+ # --- End Sampling Logic ---
432
 
 
433
  x[mask_index] = x_new_masked_part
 
 
 
434
  x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
435
 
436
  # --- Yield Visualization ---
437
+ current_generated_tokens = x[0, prompt_length:].cpu()
438
  vis_data = []
439
+ # [Keep visualization formatting logic the same]
440
  for j in range(gen_length):
441
  current_tok_id = current_generated_tokens[j].item()
 
442
  previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
 
443
  try:
 
444
  decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
445
  display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
446
+ except Exception: display_token = f"[ID:{current_tok_id}]"
447
+ color = None; token_to_display = display_token
448
+ if current_tok_id == MASK_ID: color = "#444444"
449
+ elif previous_tok_id == MASK_ID: color = "#66CC66"
450
+ else: color = "#6699CC"
451
+ should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
452
+ (EOS_ID is not None and current_tok_id == EOS_ID)
453
+ if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
454
+ if token_to_display: vis_data.append((token_to_display, color))
455
+ # --- End Vis Formatting ---
456
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457
  previous_tokens_vis = current_generated_tokens
458
 
 
459
  intermediate_response_tokens = x[0, prompt_length:]
460
  intermediate_response_text = tokenizer.decode(
461
  intermediate_response_tokens,
 
463
  clean_up_tokenization_spaces=True
464
  ).strip()
465
 
466
+ # Yield the current state of the history list (bot response still None)
467
+ yield history, vis_data, intermediate_response_text
 
 
 
 
468
  time.sleep(visualization_delay)
469
+ # --- End Loop ---
470
 
471
  end_time = time.time()
472
  print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
 
480
  clean_up_tokenization_spaces=True
481
  ).strip()
482
 
483
+ # --- CRITICAL FIX: Update history IN PLACE before final yield ---
484
+ if history: # Ensure history is not empty
485
+ history[-1][1] = final_response_text
486
+ # Now the list referenced by _chat_history_store is updated.
487
 
 
488
  final_generated_tokens = x[0, prompt_length:].cpu()
489
  vis_data_final = []
490
+ # [Keep final visualization formatting logic the same]
491
  for j in range(gen_length):
492
  current_tok_id = final_generated_tokens[j].item()
493
  previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
494
  try:
495
  decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
496
  display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
497
+ except Exception: display_token = f"[ID:{current_tok_id}]"
498
+ color = None; token_to_display = display_token
 
 
499
  if current_tok_id == MASK_ID: color = "#444444"
500
  elif previous_tok_id == MASK_ID: color = "#66CC66"
501
  else: color = "#6699CC"
502
+ should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
503
+ (EOS_ID is not None and current_tok_id == EOS_ID)
504
+ if should_hide and previous_tok_id == current_tok_id: token_to_display = ""; color = None
 
 
 
 
 
505
  if token_to_display: vis_data_final.append((token_to_display, color))
506
+ # --- End Final Vis Formatting ---
507
 
508
+ # Yield the FINAL updated history list
509
+ yield history, vis_data_final, final_response_text
510
  print("Visualization streaming complete.")
511
 
512
  except Exception as e:
513
+ print(f"Error during generation or processing: {e}")
514
+ import traceback
515
  traceback.print_exc()
516
+ # Yield the history state as it was when the error occurred
517
+ yield history, [("Error during generation.", "red")], ""
518
  return
519
 
520