Spaces:
Runtime error
Runtime error
from hidiffusion import apply_hidiffusion, remove_hidiffusion | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
from transformers import CLIPFeatureExtractor | |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker | |
import gradio as gr | |
import torch | |
import spaces | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
scheduler = DDIMScheduler.from_pretrained(pretrain_model, subfolder="scheduler") | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, scheduler=scheduler, torch_dtype=torch.float16, use_safetensors=True, variant="fp16").to("cuda") | |
#pipe.enable_model_cpu_offload() | |
#pipe.enable_vae_tiling() | |
# Apply hidiffusion with a single line of code. | |
apply_hidiffusion(pipe) | |
def run_hidiffusion(prompt, negative_prompt, progress=gr.Progress(track_tqdm=True)): | |
return pipe(prompt, guidance_scale=7.5, height=2048, width=2048, eta=1.0, negative_prompt=negative_prompt, num_inference_steps=25).images[0] | |
with gr.Blocks() as demo: | |
prompt = gr.Textbox() | |
negative_prompt = gr.Textbox() | |
btn = gr.Button("Run") | |
output = gr.Image() | |
btn.click(fn=run_hidiffusion, inputs=[prompt, negative_prompt], outputs=[output]) | |
demo.launch() |