multimodalart HF Staff commited on
Commit
42db667
·
verified ·
1 Parent(s): 2109833

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -16
app.py CHANGED
@@ -36,7 +36,7 @@ MAX_SEED = np.iinfo(np.int32).max
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
  dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
38
  STYLE_NAMES = list(styles.keys())
39
- DEFAULT_STYLE_NAME = "Spring Festival"
40
  enable_lcm_arg = False
41
 
42
  # download checkpoints
@@ -137,7 +137,7 @@ controlnet_map_fn = {
137
  "depth": get_depth_map,
138
  }
139
 
140
- pretrained_model_name_or_path = "wangqixun/YamerMIX_v8"
141
 
142
  pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
143
  pretrained_model_name_or_path,
@@ -430,17 +430,6 @@ title = r"""
430
  <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
431
  """
432
 
433
- description = r"""
434
- <b>Official 🤗 Gradio demo</b> for <a href='https://github.com/InstantID/InstantID' target='_blank'><b>InstantID: Zero-shot Identity-Preserving Generation in Seconds</b></a>.<br>
435
- We are organizing a Spring Festival event with HuggingFace from 2.7 to 2.25, and you can now generate pictures of Spring Festival costumes. Happy Dragon Year 🐲 ! Share the joy with your family.<br>
436
- How to use:<br>
437
- 1. Upload an image with a face. For images with multiple faces, we will only detect the largest face. Ensure the face is not too small and is clearly visible without significant obstructions or blurring.
438
- 2. (Optional) You can upload another image as a reference for the face pose. If you don't, we will use the first detected face image to extract facial landmarks. If you use a cropped face at step 1, it is recommended to upload it to define a new face pose.
439
- 3. (Optional) You can select multiple ControlNet models to control the generation process. The default is to use the IdentityNet only. The ControlNet models include pose skeleton, canny, and depth. You can adjust the strength of each ControlNet model to control the generation process.
440
- 4. Enter a text prompt, as done in normal text-to-image models.
441
- 5. Click the <b>Submit</b> button to begin customization.
442
- 6. Share your customized photo with your friends and enjoy! 😊"""
443
-
444
  article = r"""
445
  ---
446
  📝 **Citation**
@@ -524,7 +513,7 @@ with gr.Blocks(css=css) as demo:
524
  )
525
  with gr.Accordion("Controlnet"):
526
  controlnet_selection = gr.CheckboxGroup(
527
- ["canny", "depth"], label="Controlnet", value=["depth"],
528
  info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process"
529
  )
530
  # pose_strength = gr.Slider(
@@ -539,14 +528,14 @@ with gr.Blocks(css=css) as demo:
539
  minimum=0,
540
  maximum=1.5,
541
  step=0.05,
542
- value=0.40,
543
  )
544
  depth_strength = gr.Slider(
545
  label="Depth strength",
546
  minimum=0,
547
  maximum=1.5,
548
  step=0.05,
549
- value=0.40,
550
  )
551
  with gr.Accordion(open=False, label="Advanced Options"):
552
  negative_prompt = gr.Textbox(
 
36
  device = "cuda" if torch.cuda.is_available() else "cpu"
37
  dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
38
  STYLE_NAMES = list(styles.keys())
39
+ DEFAULT_STYLE_NAME = "(No style)"
40
  enable_lcm_arg = False
41
 
42
  # download checkpoints
 
137
  "depth": get_depth_map,
138
  }
139
 
140
+ pretrained_model_name_or_path = "SG161222/RealVisXL_V5.0"
141
 
142
  pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
143
  pretrained_model_name_or_path,
 
430
  <h1 align="center">InstantID: Zero-shot Identity-Preserving Generation in Seconds</h1>
431
  """
432
 
 
 
 
 
 
 
 
 
 
 
 
433
  article = r"""
434
  ---
435
  📝 **Citation**
 
513
  )
514
  with gr.Accordion("Controlnet"):
515
  controlnet_selection = gr.CheckboxGroup(
516
+ ["canny", "depth"], label="Controlnet", value=[],
517
  info="Use pose for skeleton inference, canny for edge detection, and depth for depth map estimation. You can try all three to control the generation process"
518
  )
519
  # pose_strength = gr.Slider(
 
528
  minimum=0,
529
  maximum=1.5,
530
  step=0.05,
531
+ value=0,
532
  )
533
  depth_strength = gr.Slider(
534
  label="Depth strength",
535
  minimum=0,
536
  maximum=1.5,
537
  step=0.05,
538
+ value=0,
539
  )
540
  with gr.Accordion(open=False, label="Advanced Options"):
541
  negative_prompt = gr.Textbox(