Spaces:
Running
on
A100
Running
on
A100
Commit
·
7389e23
1
Parent(s):
2804630
Update app.py
Browse files
app.py
CHANGED
@@ -6,14 +6,13 @@ from safetensors.torch import load_file
|
|
6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
8 |
import lora
|
9 |
-
from time import sleep
|
10 |
import copy
|
11 |
import json
|
12 |
import gc
|
13 |
-
|
14 |
with open("sdxl_loras.json", "r") as file:
|
15 |
data = json.load(file)
|
16 |
-
|
17 |
{
|
18 |
"image": item["image"],
|
19 |
"title": item["title"],
|
@@ -23,6 +22,8 @@ with open("sdxl_loras.json", "r") as file:
|
|
23 |
"is_compatible": item["is_compatible"],
|
24 |
"is_pivotal": item.get("is_pivotal", False),
|
25 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
|
|
|
|
26 |
"is_nc": item.get("is_nc", False)
|
27 |
}
|
28 |
for item in data
|
@@ -30,16 +31,20 @@ with open("sdxl_loras.json", "r") as file:
|
|
30 |
|
31 |
device = "cuda"
|
32 |
|
33 |
-
|
|
|
|
|
34 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
35 |
|
36 |
if not saved_name.endswith('.safetensors'):
|
37 |
state_dict = torch.load(saved_name)
|
38 |
else:
|
39 |
state_dict = load_file(saved_name)
|
40 |
-
|
41 |
-
item["
|
42 |
-
|
|
|
|
|
43 |
|
44 |
vae = AutoencoderKL.from_pretrained(
|
45 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
@@ -55,7 +60,7 @@ pipe.to(device)
|
|
55 |
last_lora = ""
|
56 |
last_merged = False
|
57 |
last_fused = False
|
58 |
-
def update_selection(selected_state: gr.SelectData):
|
59 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
60 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
61 |
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
@@ -135,7 +140,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
135 |
del lora_model
|
136 |
gc.collect()
|
137 |
|
138 |
-
def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(track_tqdm=True)):
|
139 |
global last_lora, last_merged, last_fused, pipe
|
140 |
|
141 |
if negative == "":
|
@@ -145,8 +150,9 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
145 |
raise gr.Error("You must select a LoRA")
|
146 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
147 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
148 |
-
|
149 |
-
|
|
|
150 |
cross_attention_kwargs = None
|
151 |
if last_lora != repo_name:
|
152 |
if last_merged:
|
@@ -186,8 +192,8 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
186 |
image = pipe(
|
187 |
prompt=prompt,
|
188 |
negative_prompt=negative,
|
189 |
-
width=
|
190 |
-
height=
|
191 |
num_inference_steps=20,
|
192 |
guidance_scale=7.5,
|
193 |
).images[0]
|
@@ -195,22 +201,36 @@ def run_lora(prompt, negative, lora_scale, selected_state, progress=gr.Progress(
|
|
195 |
gc.collect()
|
196 |
return image, gr.update(visible=True)
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
with gr.Blocks(css="custom.css") as demo:
|
|
|
200 |
title = gr.HTML(
|
201 |
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
|
202 |
elem_id="title",
|
203 |
)
|
204 |
selected_state = gr.State()
|
205 |
with gr.Row():
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
|
|
|
|
214 |
with gr.Column():
|
215 |
prompt_title = gr.Markdown(
|
216 |
value="### Click on a LoRA in the gallery to select it",
|
@@ -268,12 +288,18 @@ with gr.Blocks(css="custom.css") as demo:
|
|
268 |
submit_disclaimer = gr.Markdown(
|
269 |
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
|
270 |
)
|
271 |
-
|
|
|
|
|
|
|
|
|
|
|
272 |
gallery.select(
|
273 |
-
update_selection,
|
|
|
274 |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
|
275 |
queue=False,
|
276 |
-
show_progress=False
|
277 |
)
|
278 |
prompt.submit(
|
279 |
fn=check_selected,
|
@@ -282,7 +308,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
282 |
show_progress=False
|
283 |
).success(
|
284 |
fn=run_lora,
|
285 |
-
inputs=[prompt, negative, weight, selected_state],
|
286 |
outputs=[result, share_group],
|
287 |
)
|
288 |
button.click(
|
@@ -292,10 +318,10 @@ with gr.Blocks(css="custom.css") as demo:
|
|
292 |
show_progress=False
|
293 |
).success(
|
294 |
fn=run_lora,
|
295 |
-
inputs=[prompt, negative, weight, selected_state],
|
296 |
outputs=[result, share_group],
|
297 |
)
|
298 |
share_button.click(None, [], [], _js=share_js)
|
299 |
-
|
300 |
demo.queue(max_size=20)
|
301 |
demo.launch()
|
|
|
6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
8 |
import lora
|
|
|
9 |
import copy
|
10 |
import json
|
11 |
import gc
|
12 |
+
import random
|
13 |
with open("sdxl_loras.json", "r") as file:
|
14 |
data = json.load(file)
|
15 |
+
sdxl_loras_raw = [
|
16 |
{
|
17 |
"image": item["image"],
|
18 |
"title": item["title"],
|
|
|
22 |
"is_compatible": item["is_compatible"],
|
23 |
"is_pivotal": item.get("is_pivotal", False),
|
24 |
"text_embedding_weights": item.get("text_embedding_weights", None),
|
25 |
+
"likes": item.get("likes", 0),
|
26 |
+
"downloads": item.get("downloads", 0),
|
27 |
"is_nc": item.get("is_nc", False)
|
28 |
}
|
29 |
for item in data
|
|
|
31 |
|
32 |
device = "cuda"
|
33 |
|
34 |
+
state_dicts = {}
|
35 |
+
|
36 |
+
for item in sdxl_loras_raw:
|
37 |
saved_name = hf_hub_download(item["repo"], item["weights"])
|
38 |
|
39 |
if not saved_name.endswith('.safetensors'):
|
40 |
state_dict = torch.load(saved_name)
|
41 |
else:
|
42 |
state_dict = load_file(saved_name)
|
43 |
+
|
44 |
+
state_dicts[item["repo"]] = {
|
45 |
+
"saved_name": saved_name,
|
46 |
+
"state_dict": state_dict
|
47 |
+
}
|
48 |
|
49 |
vae = AutoencoderKL.from_pretrained(
|
50 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
|
|
60 |
last_lora = ""
|
61 |
last_merged = False
|
62 |
last_fused = False
|
63 |
+
def update_selection(selected_state: gr.SelectData, sdxl_loras):
|
64 |
lora_repo = sdxl_loras[selected_state.index]["repo"]
|
65 |
instance_prompt = sdxl_loras[selected_state.index]["trigger_word"]
|
66 |
new_placeholder = "Type a prompt. This LoRA applies for all prompts, no need for a trigger word" if instance_prompt == "" else "Type a prompt to use your selected LoRA"
|
|
|
140 |
del lora_model
|
141 |
gc.collect()
|
142 |
|
143 |
+
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
144 |
global last_lora, last_merged, last_fused, pipe
|
145 |
|
146 |
if negative == "":
|
|
|
150 |
raise gr.Error("You must select a LoRA")
|
151 |
repo_name = sdxl_loras[selected_state.index]["repo"]
|
152 |
weight_name = sdxl_loras[selected_state.index]["weights"]
|
153 |
+
|
154 |
+
full_path_lora = state_dicts[repo_name]["saved_name"]
|
155 |
+
loaded_state_dict = state_dicts[repo_name]["state_dict"]
|
156 |
cross_attention_kwargs = None
|
157 |
if last_lora != repo_name:
|
158 |
if last_merged:
|
|
|
192 |
image = pipe(
|
193 |
prompt=prompt,
|
194 |
negative_prompt=negative,
|
195 |
+
width=1024,
|
196 |
+
height=1024,
|
197 |
num_inference_steps=20,
|
198 |
guidance_scale=7.5,
|
199 |
).images[0]
|
|
|
201 |
gc.collect()
|
202 |
return image, gr.update(visible=True)
|
203 |
|
204 |
+
def shuffle_gallery(sdxl_loras):
|
205 |
+
random.shuffle(sdxl_loras)
|
206 |
+
return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras
|
207 |
+
|
208 |
+
def swap_gallery(order, sdxl_loras):
|
209 |
+
if(order == "random"):
|
210 |
+
return shuffle_gallery(sdxl_loras)
|
211 |
+
else:
|
212 |
+
sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get(order, 0), reverse=True)
|
213 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
214 |
+
|
215 |
|
216 |
with gr.Blocks(css="custom.css") as demo:
|
217 |
+
gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
|
218 |
title = gr.HTML(
|
219 |
"""<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
|
220 |
elem_id="title",
|
221 |
)
|
222 |
selected_state = gr.State()
|
223 |
with gr.Row():
|
224 |
+
with gr.Box(elem_id="gallery_box"):
|
225 |
+
order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
|
226 |
+
gallery = gr.Gallery(
|
227 |
+
#value=[(item["image"], item["title"]) for item in sdxl_loras],
|
228 |
+
label="SDXL LoRA Gallery",
|
229 |
+
allow_preview=False,
|
230 |
+
columns=3,
|
231 |
+
elem_id="gallery",
|
232 |
+
show_share_button=False
|
233 |
+
)
|
234 |
with gr.Column():
|
235 |
prompt_title = gr.Markdown(
|
236 |
value="### Click on a LoRA in the gallery to select it",
|
|
|
288 |
submit_disclaimer = gr.Markdown(
|
289 |
"This is a curated gallery by me, [apolinário (multimodal.art)](https://twitter.com/multimodalart). I'll try to include as many cool LoRAs as they are submitted! You can [duplicate this Space](https://huggingface.co/spaces/multimodalart/LoraTheExplorer?duplicate=true) to use it privately, and add your own LoRAs by editing `sdxl_loras.json` in the Files tab of your private space."
|
290 |
)
|
291 |
+
order_gallery.change(
|
292 |
+
fn=swap_gallery,
|
293 |
+
inputs=[order_gallery, gr_sdxl_loras],
|
294 |
+
outputs=[gallery, gr_sdxl_loras],
|
295 |
+
queue=False
|
296 |
+
)
|
297 |
gallery.select(
|
298 |
+
fn=update_selection,
|
299 |
+
inputs=[gr_sdxl_loras],
|
300 |
outputs=[prompt_title, prompt, prompt, selected_state, use_diffusers, use_uis],
|
301 |
queue=False,
|
302 |
+
show_progress=False
|
303 |
)
|
304 |
prompt.submit(
|
305 |
fn=check_selected,
|
|
|
308 |
show_progress=False
|
309 |
).success(
|
310 |
fn=run_lora,
|
311 |
+
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
312 |
outputs=[result, share_group],
|
313 |
)
|
314 |
button.click(
|
|
|
318 |
show_progress=False
|
319 |
).success(
|
320 |
fn=run_lora,
|
321 |
+
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras],
|
322 |
outputs=[result, share_group],
|
323 |
)
|
324 |
share_button.click(None, [], [], _js=share_js)
|
325 |
+
demo.load(fn=shuffle_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False)
|
326 |
demo.queue(max_size=20)
|
327 |
demo.launch()
|