# dataset_and_utils.py file taken from https://github.com/replicate/cog-sdxl/blob/main/dataset_and_utils.py import os from typing import Dict, List, Optional, Tuple import numpy as np import pandas as pd import PIL import torch import torch.utils.checkpoint from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel from PIL import Image from safetensors import safe_open from safetensors.torch import save_file from torch.utils.data import Dataset from transformers import AutoTokenizer, PretrainedConfig def prepare_image( pil_image: PIL.Image.Image, w: int = 512, h: int = 512 ) -> torch.Tensor: pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(pil_image.convert("RGB")) arr = arr.astype(np.float32) / 127.5 - 1 arr = np.transpose(arr, [2, 0, 1]) image = torch.from_numpy(arr).unsqueeze(0) return image def prepare_mask( pil_image: PIL.Image.Image, w: int = 512, h: int = 512 ) -> torch.Tensor: pil_image = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) arr = np.array(pil_image.convert("L")) arr = arr.astype(np.float32) / 255.0 arr = np.expand_dims(arr, 0) image = torch.from_numpy(arr).unsqueeze(0) return image class PreprocessedDataset(Dataset): def __init__( self, csv_path: str, tokenizer_1, tokenizer_2, vae_encoder, text_encoder_1=None, text_encoder_2=None, do_cache: bool = False, size: int = 512, text_dropout: float = 0.0, scale_vae_latents: bool = True, substitute_caption_map: Dict[str, str] = {}, ): super().__init__() self.data = pd.read_csv(csv_path) self.csv_path = csv_path self.caption = self.data["caption"] # make it lowercase self.caption = self.caption.str.lower() for key, value in substitute_caption_map.items(): self.caption = self.caption.str.replace(key.lower(), value) self.image_path = self.data["image_path"] if "mask_path" not in self.data.columns: self.mask_path = None else: self.mask_path = self.data["mask_path"] if text_encoder_1 is None: self.return_text_embeddings = False else: self.text_encoder_1 = text_encoder_1 self.text_encoder_2 = text_encoder_2 self.return_text_embeddings = True assert ( NotImplementedError ), "Preprocessing Text Encoder is not implemented yet" self.tokenizer_1 = tokenizer_1 self.tokenizer_2 = tokenizer_2 self.vae_encoder = vae_encoder self.scale_vae_latents = scale_vae_latents self.text_dropout = text_dropout self.size = size if do_cache: self.vae_latents = [] self.tokens_tuple = [] self.masks = [] self.do_cache = True print("Captions to train on: ") for idx in range(len(self.data)): token, vae_latent, mask = self._process(idx) self.vae_latents.append(vae_latent) self.tokens_tuple.append(token) self.masks.append(mask) del self.vae_encoder else: self.do_cache = False @torch.no_grad() def _process( self, idx: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: image_path = self.image_path[idx] image_path = os.path.join(os.path.dirname(self.csv_path), image_path) image = PIL.Image.open(image_path).convert("RGB") image = prepare_image(image, self.size, self.size).to( dtype=self.vae_encoder.dtype, device=self.vae_encoder.device ) caption = self.caption[idx] print(caption) # tokenizer_1 ti1 = self.tokenizer_1( caption, padding="max_length", max_length=77, truncation=True, add_special_tokens=True, return_tensors="pt", ).input_ids ti2 = self.tokenizer_2( caption, padding="max_length", max_length=77, truncation=True, add_special_tokens=True, return_tensors="pt", ).input_ids vae_latent = self.vae_encoder.encode(image).latent_dist.sample() if self.scale_vae_latents: vae_latent = vae_latent * self.vae_encoder.config.scaling_factor if self.mask_path is None: mask = torch.ones_like( vae_latent, dtype=self.vae_encoder.dtype, device=self.vae_encoder.device ) else: mask_path = self.mask_path[idx] mask_path = os.path.join(os.path.dirname(self.csv_path), mask_path) mask = PIL.Image.open(mask_path) mask = prepare_mask(mask, self.size, self.size).to( dtype=self.vae_encoder.dtype, device=self.vae_encoder.device ) mask = torch.nn.functional.interpolate( mask, size=(vae_latent.shape[-2], vae_latent.shape[-1]), mode="nearest" ) mask = mask.repeat(1, vae_latent.shape[1], 1, 1) assert len(mask.shape) == 4 and len(vae_latent.shape) == 4 return (ti1.squeeze(), ti2.squeeze()), vae_latent.squeeze(), mask.squeeze() def __len__(self) -> int: return len(self.data) def atidx( self, idx: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: if self.do_cache: return self.tokens_tuple[idx], self.vae_latents[idx], self.masks[idx] else: return self._process(idx) def __getitem__( self, idx: int ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]: token, vae_latent, mask = self.atidx(idx) return token, vae_latent, mask def import_model_class_from_model_name_or_path( pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder" ): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder=subfolder, revision=revision ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "CLIPTextModelWithProjection": from transformers import CLIPTextModelWithProjection return CLIPTextModelWithProjection else: raise ValueError(f"{model_class} is not supported.") def load_models(pretrained_model_name_or_path, revision, device, weight_dtype): tokenizer_one = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, subfolder="tokenizer", revision=revision, use_fast=False, ) tokenizer_two = AutoTokenizer.from_pretrained( pretrained_model_name_or_path, subfolder="tokenizer_2", revision=revision, use_fast=False, ) # Load scheduler and models noise_scheduler = DDPMScheduler.from_pretrained( pretrained_model_name_or_path, subfolder="scheduler" ) # import correct text encoder classes text_encoder_cls_one = import_model_class_from_model_name_or_path( pretrained_model_name_or_path, revision ) text_encoder_cls_two = import_model_class_from_model_name_or_path( pretrained_model_name_or_path, revision, subfolder="text_encoder_2" ) text_encoder_one = text_encoder_cls_one.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision ) text_encoder_two = text_encoder_cls_two.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder_2", revision=revision ) vae = AutoencoderKL.from_pretrained( pretrained_model_name_or_path, subfolder="vae", revision=revision ) unet = UNet2DConditionModel.from_pretrained( pretrained_model_name_or_path, subfolder="unet", revision=revision ) vae.requires_grad_(False) text_encoder_one.requires_grad_(False) text_encoder_two.requires_grad_(False) unet.to(device, dtype=weight_dtype) vae.to(device, dtype=torch.float32) text_encoder_one.to(device, dtype=weight_dtype) text_encoder_two.to(device, dtype=weight_dtype) return ( tokenizer_one, tokenizer_two, noise_scheduler, text_encoder_one, text_encoder_two, vae, unet, ) def unet_attn_processors_state_dict(unet) -> Dict[str, torch.tensor]: """ Returns: a state dict containing just the attention processor parameters. """ attn_processors = unet.attn_processors attn_processors_state_dict = {} for attn_processor_key, attn_processor in attn_processors.items(): for parameter_key, parameter in attn_processor.state_dict().items(): attn_processors_state_dict[ f"{attn_processor_key}.{parameter_key}" ] = parameter return attn_processors_state_dict class TokenEmbeddingsHandler: def __init__(self, text_encoders, tokenizers): self.text_encoders = text_encoders self.tokenizers = tokenizers self.train_ids: Optional[torch.Tensor] = None self.inserting_toks: Optional[List[str]] = None self.embeddings_settings = {} def initialize_new_tokens(self, inserting_toks: List[str]): idx = 0 for tokenizer, text_encoder in zip(self.tokenizers, self.text_encoders): assert isinstance( inserting_toks, list ), "inserting_toks should be a list of strings." assert all( isinstance(tok, str) for tok in inserting_toks ), "All elements in inserting_toks should be strings." self.inserting_toks = inserting_toks special_tokens_dict = {"additional_special_tokens": self.inserting_toks} tokenizer.add_special_tokens(special_tokens_dict) text_encoder.resize_token_embeddings(len(tokenizer)) self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) # random initialization of new tokens std_token_embedding = ( text_encoder.text_model.embeddings.token_embedding.weight.data.std() ) print(f"{idx} text encodedr's std_token_embedding: {std_token_embedding}") text_encoder.text_model.embeddings.token_embedding.weight.data[ self.train_ids ] = ( torch.randn( len(self.train_ids), text_encoder.text_model.config.hidden_size ) .to(device=self.device) .to(dtype=self.dtype) * std_token_embedding ) self.embeddings_settings[ f"original_embeddings_{idx}" ] = text_encoder.text_model.embeddings.token_embedding.weight.data.clone() self.embeddings_settings[f"std_token_embedding_{idx}"] = std_token_embedding inu = torch.ones((len(tokenizer),), dtype=torch.bool) inu[self.train_ids] = False self.embeddings_settings[f"index_no_updates_{idx}"] = inu print(self.embeddings_settings[f"index_no_updates_{idx}"].shape) idx += 1 def save_embeddings(self, file_path: str): assert ( self.train_ids is not None ), "Initialize new tokens before saving embeddings." tensors = {} for idx, text_encoder in enumerate(self.text_encoders): assert text_encoder.text_model.embeddings.token_embedding.weight.data.shape[ 0 ] == len(self.tokenizers[0]), "Tokenizers should be the same." new_token_embeddings = ( text_encoder.text_model.embeddings.token_embedding.weight.data[ self.train_ids ] ) tensors[f"text_encoders_{idx}"] = new_token_embeddings save_file(tensors, file_path) @property def dtype(self): return self.text_encoders[0].dtype @property def device(self): return self.text_encoders[0].device def _load_embeddings(self, loaded_embeddings, tokenizer, text_encoder): # Assuming new tokens are of the format <s_i> self.inserting_toks = [f"<s{i}>" for i in range(loaded_embeddings.shape[0])] special_tokens_dict = {"additional_special_tokens": self.inserting_toks} tokenizer.add_special_tokens(special_tokens_dict) text_encoder.resize_token_embeddings(len(tokenizer)) self.train_ids = tokenizer.convert_tokens_to_ids(self.inserting_toks) assert self.train_ids is not None, "New tokens could not be converted to IDs." text_encoder.text_model.embeddings.token_embedding.weight.data[ self.train_ids ] = loaded_embeddings.to(device=self.device).to(dtype=self.dtype) @torch.no_grad() def retract_embeddings(self): for idx, text_encoder in enumerate(self.text_encoders): index_no_updates = self.embeddings_settings[f"index_no_updates_{idx}"] text_encoder.text_model.embeddings.token_embedding.weight.data[ index_no_updates ] = ( self.embeddings_settings[f"original_embeddings_{idx}"][index_no_updates] .to(device=text_encoder.device) .to(dtype=text_encoder.dtype) ) # for the parts that were updated, we need to normalize them # to have the same std as before std_token_embedding = self.embeddings_settings[f"std_token_embedding_{idx}"] index_updates = ~index_no_updates new_embeddings = ( text_encoder.text_model.embeddings.token_embedding.weight.data[ index_updates ] ) off_ratio = std_token_embedding / new_embeddings.std() new_embeddings = new_embeddings * (off_ratio**0.1) text_encoder.text_model.embeddings.token_embedding.weight.data[ index_updates ] = new_embeddings def load_embeddings(self, file_path: str): with safe_open(file_path, framework="pt", device=self.device.type) as f: for idx in range(len(self.text_encoders)): text_encoder = self.text_encoders[idx] tokenizer = self.tokenizers[idx] loaded_embeddings = f.get_tensor(f"text_encoders_{idx}") self._load_embeddings(loaded_embeddings, tokenizer, text_encoder)