Spaces:
Running
Running
File size: 52,724 Bytes
2aeb649 d95253f 2aeb649 d95253f 9071ed9 2aeb649 d95253f 2a43fc6 d95253f cd5feb8 d95253f 3cf5f90 acf180f d95253f 9669215 d95253f 2aeb649 d95253f 2aeb649 6e50c0f d95253f 2aeb649 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f bf3802a d95253f 6e50c0f d95253f 2aeb649 d95253f e460389 d95253f e460389 6e50c0f acf180f d95253f acf180f d95253f 6e50c0f d95253f e460389 c5b9a3f d95253f 6e50c0f d95253f 6e50c0f 2aeb649 6e50c0f d95253f 6e50c0f d95253f 5e398c6 acf180f d95253f 6e50c0f acf180f d95253f 6e50c0f d95253f acf180f d95253f acf180f 6e50c0f d95253f acf180f d95253f acf180f d95253f acf180f 6e50c0f d95253f 6e50c0f acf180f 6e50c0f d95253f 6e50c0f d95253f a2a0ec8 d95253f 2aeb649 d95253f 2aeb649 d95253f 2aeb649 d95253f a2a0ec8 6e50c0f d95253f 2aeb649 e48859b d95253f 2aeb649 d95253f 6e50c0f d95253f 2aeb649 d95253f 2aeb649 d95253f 2aeb649 d95253f 2aeb649 d95253f 6389ef8 2aeb649 6e50c0f d95253f 8d54c58 d95253f 8d54c58 d95253f 6e50c0f d95253f 8d54c58 d95253f 0ec77e4 8d54c58 d95253f 8d54c58 d95253f 8d54c58 6e50c0f 53b0d0a 4f448b7 d95253f 8d54c58 d95253f 8177b9c 8d54c58 d95253f 388621e ff20abd 4f448b7 d95253f 4f448b7 8d54c58 d95253f 8d54c58 0ec77e4 8d54c58 d95253f 8d54c58 d95253f 8d54c58 d95253f 8d54c58 6e50c0f 8d54c58 6e50c0f 8d54c58 6e50c0f d95253f 8d54c58 d95253f 6e50c0f d95253f 6e50c0f d95253f 8d54c58 d95253f 0ec77e4 d95253f 8d54c58 d95253f 8d54c58 d95253f 8d54c58 6e50c0f d95253f 8d54c58 d95253f 8d54c58 d95253f 0b1a6cb d95253f 8d54c58 d95253f 3f71e88 6531480 d95253f 6e50c0f 3f71e88 8d54c58 2aeb649 f5a2481 2aeb649 4f448b7 2aeb649 f5a2481 1d06c07 d95253f 8d92190 53b0d0a 1d06c07 d95253f 1d06c07 f9f9336 d95253f 6e50c0f d95253f 6e50c0f 8d54c58 d95253f 8d54c58 1d06c07 d95253f 2a43fc6 6e50c0f d95253f 2a43fc6 d95253f 6e50c0f 2a43fc6 d95253f 6e50c0f d95253f 2a43fc6 6e50c0f d95253f c50ed1f a0e1b6c d95253f b189c01 6e50c0f d95253f 0e77e0b d95253f 6e50c0f d95253f 6e50c0f d95253f 78994f5 d95253f 78994f5 0227cff d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f 0817061 d95253f 0817061 d95253f 7950bc5 d95253f 2c21d02 d95253f 2c21d02 d95253f 0ec77e4 d95253f 6e50c0f d95253f 6e50c0f d95253f d6bfdd6 d95253f 9329734 6e50c0f d95253f 49bde08 d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f 0817061 d95253f 6e50c0f d95253f 6e50c0f d95253f 7256938 d95253f 2aeb649 d95253f 2aeb649 d95253f da93b9f 2c21d02 d95253f 6e50c0f d95253f 6e50c0f d95253f 2aeb649 d95253f 6e50c0f d95253f 0227cff d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f 6e50c0f d95253f 0ec77e4 d95253f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 |
import requests
import os
import gradio as gr
from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file # Removed duplicate update_repo_visibility
from slugify import slugify
# import gradio as gr # Already imported
import re
import uuid
from typing import Optional, Dict, Any
import json
# from bs4 import BeautifulSoup # Not used
TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"]
# --- Model Mappings ---
MODEL_MAPPING_IMAGE = {
"SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
"SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0", # Usually mapped to 1.0
"SD 1.5": "runwayml/stable-diffusion-v1-5",
"SD 1.4": "CompVis/stable-diffusion-v1-4",
"SD 2.1": "stabilityai/stable-diffusion-2-1-base",
"SD 2.0": "stabilityai/stable-diffusion-2-base",
"SD 2.1 768": "stabilityai/stable-diffusion-2-1",
"SD 2.0 768": "stabilityai/stable-diffusion-2",
"SD 3": "stabilityai/stable-diffusion-3-medium-diffusers", # Assuming medium, adjust if others are common
"SD 3.5": "stabilityai/stable-diffusion-3.5-large", # Assuming large, adjust
"SD 3.5 Large": "stabilityai/stable-diffusion-3.5-large",
"SD 3.5 Medium": "stabilityai/stable-diffusion-3.5-medium",
"SD 3.5 Large Turbo": "stabilityai/stable-diffusion-3.5-large-turbo",
"Flux.1 D": "black-forest-labs/FLUX.1-dev",
"Flux.1 S": "black-forest-labs/FLUX.1-schnell",
}
MODEL_MAPPING_VIDEO = {
"LTXV": "Lightricks/LTX-Video-0.9.7-dev",
"Wan Video 1.3B t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
"Wan Video 14B t2v": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
"Wan Video 14B i2v 480p": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers",
"Wan Video 14B i2v 720p": "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers",
"Hunyuan Video": "hunyuanvideo-community/HunyuanVideo-I2V", # Default, will be overridden by choice
}
SUPPORTED_CIVITAI_BASE_MODELS = list(MODEL_MAPPING_IMAGE.keys()) + list(MODEL_MAPPING_VIDEO.keys())
cookie_info = os.environ.get("COOKIE_INFO")
headers = {
"authority": "civitai.com",
"accept": "*/*",
"accept-language": "en-US,en;q=0.9", # Simplified
"content-type": "application/json",
"cookie": cookie_info, # Use the env var
"sec-ch-ua": "\"Chromium\";v=\"118\", \"Not_A Brand\";v=\"99\"", # Example, update if needed
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Windows\"", # Example
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-origin",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36" # Example
}
def get_json_data(url):
url_split = url.split('/')
if len(url_split) < 5 or not url_split[4].isdigit():
print(f"Invalid Civitai URL format or model ID not found: {url}")
gr.Warning(f"Invalid Civitai URL format. Ensure it's like 'https://civitai.com/models/YOUR_MODEL_ID/MODEL_NAME'. Problem with: {url}")
return None
api_url = f"https://civitai.com/api/v1/models/{url_split[4]}"
try:
response = requests.get(api_url)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching JSON data from {api_url}: {e}")
gr.Warning(f"Error fetching data from Civitai API for {url_split[4]}: {e}")
return None
def check_nsfw(json_data: Dict[str, Any], profile: Optional[gr.OAuthProfile]) -> bool:
if not json_data:
return False # Should not happen if get_json_data succeeded
# Overall model boolean flag - highest priority
if json_data.get("nsfw", False):
print("Model flagged as NSFW by 'nsfw: true'.")
gr.Info("Reason: Model explicitly flagged as NSFW on Civitai.")
return False # Unsafe
# Overall model numeric nsfwLevel - second priority. Max allowed is 5 (nsfwLevel < 6).
# nsfwLevel definitions: None (1), Mild (2), Mature (4), Adult (5), X (8), R (16), XXX (32)
model_nsfw_level = json_data.get("nsfwLevel", 0)
if model_nsfw_level > 5: # Anything above "Adult"
print(f"Model's overall nsfwLevel ({model_nsfw_level}) is > 5. Blocking.")
gr.Info(f"Reason: Model's overall NSFW Level ({model_nsfw_level}) is above the allowed threshold (5).")
return False # Unsafe
# If uploader is trusted and the above checks passed, they bypass further version/image checks.
if profile and profile.username in TRUSTED_UPLOADERS:
print(f"User {profile.username} is trusted. Model 'nsfw' is false and overall nsfwLevel ({model_nsfw_level}) is <= 5. Allowing.")
return True
# For non-trusted users, check nsfwLevel of model versions and individual images/videos
for model_version in json_data.get("modelVersions", []):
version_nsfw_level = model_version.get("nsfwLevel", 0)
if version_nsfw_level > 5:
print(f"Model version nsfwLevel ({version_nsfw_level}) is > 5 for non-trusted user. Blocking.")
gr.Info(f"Reason: A model version's NSFW Level ({version_nsfw_level}) is above 5.")
return False
return True # Safe for non-trusted user if all checks pass
def get_prompts_from_image(image_id_str: str):
# image_id_str could be non-numeric if URL parsing failed or format changed
try:
image_id = int(image_id_str)
except ValueError:
print(f"Invalid image_id_str for TRPC call: {image_id_str}. Skipping prompt fetch.")
return "", ""
print(f"Fetching prompts for image_id: {image_id}")
url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}'
prompt = ""
negative_prompt = ""
try:
response = requests.get(url, headers=headers, timeout=10) # Added timeout
response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code
data = response.json()
print("Response from image: ", data)
# Expected structure: {'result': {'data': {'json': {'meta': {'prompt': '...', 'negativePrompt': '...'}}}}}
meta = data.get('result', {}).get('data', {}).get('json', {}).get('meta')
if meta: # meta can be None
prompt = meta.get('prompt', "")
negative_prompt = meta.get('negativePrompt', "")
except requests.exceptions.RequestException as e:
print(f"Could not fetch/parse generation data for image_id {image_id}: {e}")
except json.JSONDecodeError as e:
print(f"JSONDecodeError for image_id {image_id}: {e}. Response content: {response.text[:200]}")
return prompt, negative_prompt
def extract_info(json_data: Dict[str, Any], hunyuan_type: Optional[str] = None) -> Optional[Dict[str, Any]]:
if json_data.get("type") != "LORA":
print("Model type is not LORA.")
return None
for model_version in json_data.get("modelVersions", []):
civitai_base_model_name = model_version.get("baseModel")
if civitai_base_model_name in SUPPORTED_CIVITAI_BASE_MODELS:
base_model_hf = ""
is_video = False
if civitai_base_model_name == "Hunyuan Video":
is_video = True
if hunyuan_type == "Text-to-Video":
base_model_hf = "hunyuanvideo-community/HunyuanVideo"
else: # Default or "Image-to-Video"
base_model_hf = "hunyuanvideo-community/HunyuanVideo-I2V"
elif civitai_base_model_name in MODEL_MAPPING_VIDEO:
is_video = True
base_model_hf = MODEL_MAPPING_VIDEO[civitai_base_model_name]
elif civitai_base_model_name in MODEL_MAPPING_IMAGE:
base_model_hf = MODEL_MAPPING_IMAGE[civitai_base_model_name]
else:
print(f"Logic error: {civitai_base_model_name} in supported list but not mapped.")
continue
primary_file_info = None
for file_entry in model_version.get("files", []):
if file_entry.get("primary", False) and file_entry.get("type") == "Model":
primary_file_info = file_entry
break
if not primary_file_info:
for file_entry in model_version.get("files", []):
if file_entry.get("type") == "Model" and file_entry.get("name","").endswith(".safetensors"):
primary_file_info = file_entry
print(f"Using first safetensors file as primary: {primary_file_info['name']}")
break
if not primary_file_info:
print(f"No primary or suitable safetensors model file found for version {model_version.get('name')}")
continue
urls_to_download = [{"url": primary_file_info["downloadUrl"], "filename": primary_file_info["name"], "type": "weightName"}]
for image_obj in model_version.get("images", []):
image_url = image_obj.get("url")
if not image_url:
continue
image_nsfw_level = image_obj.get("nsfwLevel", 0)
if image_nsfw_level > 5:
continue
filename_part = os.path.basename(image_url)
image_id_str = filename_part.split('.')[0]
prompt, negative_prompt = "", ""
if image_obj.get("hasMeta", False):
prompt, negative_prompt = get_prompts_from_image(image_id_str)
urls_to_download.append({
"url": image_url,
"filename": filename_part,
"type": "imageName",
"prompt": prompt,
"negative_prompt": negative_prompt,
"media_type": image_obj.get("type", "image")
})
info = {
"urls_to_download": urls_to_download,
"id": model_version["id"],
"baseModel": base_model_hf,
"civitai_base_model_name": civitai_base_model_name,
"is_video_model": is_video,
"modelId": json_data.get("id", ""),
"name": json_data["name"],
"description": json_data.get("description", ""),
"trainedWords": model_version.get("trainedWords", []),
"creator": json_data.get("creator", {}).get("username", "Unknown"),
"tags": json_data.get("tags", []),
"allowNoCredit": json_data.get("allowNoCredit", True),
"allowCommercialUse": json_data.get("allowCommercialUse", "Sell"),
"allowDerivatives": json_data.get("allowDerivatives", True),
"allowDifferentLicense": json_data.get("allowDifferentLicense", True)
}
return info
print("No suitable model version found with a supported base model.")
return None
def download_files(info, folder="."):
downloaded_files = {
"imageName": [], # Will contain both image and video filenames
"imagePrompt": [],
"imageNegativePrompt": [],
"weightName": [],
"mediaType": [] # To distinguish image/video for gallery if needed later
}
for item in info["urls_to_download"]:
# Ensure filename is safe for filesystem
safe_filename = slugify(item["filename"].rsplit('.', 1)[0]) + '.' + item["filename"].rsplit('.', 1)[-1] if '.' in item["filename"] else slugify(item["filename"])
# Civitai URLs might need auth for direct download if not public
try:
download_file_with_auth(item["url"], safe_filename, folder) # Changed to use the auth-aware download
downloaded_files[item["type"]].append(safe_filename)
if item["type"] == "imageName": # This list now includes videos too
prompt_clean = re.sub(r'<.*?>', '', item.get("prompt", ""))
negative_prompt_clean = re.sub(r'<.*?>', '', item.get("negative_prompt", ""))
downloaded_files["imagePrompt"].append(prompt_clean)
downloaded_files["imageNegativePrompt"].append(negative_prompt_clean)
downloaded_files["mediaType"].append(item.get("media_type", "image"))
except gr.Error as e: # Catch Gradio errors from download_file_with_auth
print(f"Skipping file {safe_filename} due to download error: {e.message}")
gr.Warning(f"Skipping file {safe_filename} due to download error: {e.message}")
return downloaded_files
# Renamed original download_file to download_file_with_auth
def download_file_with_auth(url, filename, folder="."):
headers = {}
# Add CIVITAI_API_TOKEN if available, for potentially restricted downloads
# Note: The prompt example didn't use it for image URLs, only for the model file via API.
# However, some image/video URLs might also require it if they are not fully public.
if "CIVITAI_API_TOKEN" in os.environ: # Changed from CIVITAI_API
headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API_TOKEN"]}'
try:
response = requests.get(url, headers=headers, stream=True, timeout=60) # Added stream and timeout
response.raise_for_status()
except requests.exceptions.HTTPError as e:
print(f"HTTPError downloading {url}: {e}")
# No automatic retry with token here as it was specific to the primary file in original code
# If it was related to auth, the initial header should have helped.
raise gr.Error(f"Error downloading file {filename}: {e}")
except requests.exceptions.RequestException as e:
print(f"RequestException downloading {url}: {e}")
raise gr.Error(f"Error downloading file {filename}: {e}")
filepath = os.path.join(folder, filename)
with open(filepath, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Successfully downloaded {filepath}")
def process_url(url, profile, do_download=True, folder=".", hunyuan_type: Optional[str] = None):
json_data = get_json_data(url)
if json_data:
if check_nsfw(json_data, profile):
info = extract_info(json_data, hunyuan_type=hunyuan_type)
if info:
downloaded_files_summary = {}
if do_download:
gr.Info(f"Downloading files for {info['name']}...")
downloaded_files_summary = download_files(info, folder)
gr.Info(f"Finished downloading files for {info['name']}.")
return info, downloaded_files_summary
else:
raise gr.Error("LoRA extraction failed. The base model might not be supported, or it's not a LoRA model, or no suitable files found in the version.")
else:
# check_nsfw now prints detailed reasons via gr.Info/print
raise gr.Error("This model has content tagged as unsafe by CivitAI or exceeds NSFW level limits.")
else:
raise gr.Error("Failed to fetch model data from CivitAI API. Please check the URL and Civitai's status.")
def create_readme(info: Dict[str, Any], downloaded_files: Dict[str, Any], user_repo_id: str, link_civit: bool = False, is_author: bool = True, folder: str = "."):
readme_content = ""
original_url = f"https://civitai.com/models/{info['modelId']}" if info.get('modelId') else "CivitAI (ID not found)"
link_civit_disclaimer = f'([CivitAI]({original_url}))'
non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
is_video = info.get("is_video_model", False)
base_hf_model = info["baseModel"] # This is the HF model ID
civitai_bm_name_lower = info.get("civitai_base_model_name", "").lower()
if is_video:
default_tags = ["lora", "diffusers", "migrated", "video"]
if "template:" not in " ".join(info.get("tags", [])):
default_tags.append("template:video-lora")
if "t2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo")):
default_tags.append("text-to-video")
elif "i2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo-I2V")):
default_tags.append("image-to-video")
else:
default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "migrated"]
if "template:" not in " ".join(info.get("tags", [])):
default_tags.append("template:sd-lora")
civit_tags_raw = info.get("tags", [])
civit_tags_clean = [t.replace(":", "").strip() for t in civit_tags_raw if t.replace(":", "").strip()]
final_civit_tags = [tag for tag in civit_tags_clean if tag not in default_tags and tag.lower() not in default_tags]
tags = default_tags + final_civit_tags
unpacked_tags = "\n- ".join(sorted(list(set(tags))))
trained_words = info.get('trainedWords', [])
formatted_words = ', '.join(f'`{word}`' for word in trained_words if word)
trigger_words_section = f"## Trigger words\nYou should use {formatted_words} to trigger the generation." if formatted_words else ""
widget_content = ""
max_widget_items = 5
items_for_widget = list(zip(
downloaded_files.get("imagePrompt", []),
downloaded_files.get("imageNegativePrompt", []),
downloaded_files.get("imageName", [])
))[:max_widget_items]
for index, (prompt, negative_prompt, media_filename) in enumerate(items_for_widget):
escaped_prompt = prompt.replace("'", "''") if prompt else ' '
base_media_filename = os.path.basename(media_filename)
negative_prompt_content = f"negative_prompt: {negative_prompt}\n" if negative_prompt else ""
# Corrected YAML for widget:
widget_content += f"""- text: '{escaped_prompt}'
{negative_prompt_content}
output:
url: >-
{base_media_filename}
"""
if base_hf_model in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
dtype = "torch.bfloat16"
else:
dtype = "torch.float16" # Default for others, Hunyuan examples specify this.
main_prompt_for_snippet_raw = formatted_words if formatted_words else 'Your custom prompt'
if items_for_widget and items_for_widget[0][0]:
main_prompt_for_snippet_raw = items_for_widget[0][0]
# Escape single quotes for Python string literals
main_prompt_for_snippet = main_prompt_for_snippet_raw.replace("'", "\\'")
lora_loader_line = f"pipe.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files.get('weightName', ['your_lora.safetensors'])[0]}')"
diffusers_example = ""
if is_video:
if base_hf_model == "hunyuanvideo-community/HunyuanVideo-I2V":
diffusers_example = f"""
```py
import torch
from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import load_image, export_to_video
# Available checkpoints: "hunyuanvideo-community/HunyuanVideo-I2V" and "hunyuanvideo-community/HunyuanVideo-I2V-33ch"
model_id = "{base_hf_model}"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16 # Explicitly bfloat16 for transformer
)
pipe = HunyuanVideoImageToVideoPipeline.from_pretrained(
model_id, transformer=transformer, torch_dtype=torch.float16 # float16 for pipeline
)
pipe.vae.enable_tiling()
{lora_loader_line}
pipe.to("cuda")
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A detailed scene description'}"
# Replace with your image path or URL
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png"
image = load_image(image_url)
output = pipe(image=image, prompt=prompt).frames[0]
export_to_video(output, "output.mp4", fps=15)
```
"""
elif base_hf_model == "hunyuanvideo-community/HunyuanVideo":
diffusers_example = f"""
```py
import torch
from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel
from diffusers.utils import export_to_video
model_id = "{base_hf_model}"
transformer = HunyuanVideoTransformer3DModel.from_pretrained(
model_id, subfolder="transformer", torch_dtype=torch.bfloat16
)
pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16)
{lora_loader_line}
# Enable memory savings
pipe.vae.enable_tiling()
pipe.enable_model_cpu_offload() # Optional: if VRAM is limited
output = pipe(
prompt="{main_prompt_for_snippet if main_prompt_for_snippet else 'A cinematic video scene'}",
height=320, # Adjust as needed
width=512, # Adjust as needed
num_frames=61, # Adjust as needed
num_inference_steps=30, # Adjust as needed
).frames[0]
export_to_video(output, "output.mp4", fps=15)
```
"""
elif base_hf_model == "Lightricks/LTX-Video-0.9.7-dev" or base_hf_model == "Lightricks/LTX-Video-0.9.7-distilled": # Assuming -dev is the one from mapping
# Note: The LTX example is complex. We'll simplify a bit for a LoRA example.
# The user might need to adapt the full pipeline if they used the distilled one directly.
# We assume the LoRA is trained on the main LTX pipeline.
diffusers_example = f"""
```py
import torch
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition
from diffusers.utils import export_to_video, load_image, load_video
# Use the base LTX model your LoRA was trained on. The example below uses the distilled version.
# Adjust if your LoRA is for the non-distilled "Lightricks/LTX-Video-0.9.7-dev".
pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16)
{lora_loader_line}
# The LTX upsampler is separate and typically doesn't have LoRAs loaded into it directly.
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_spatial_compression_ratio):
height = height - (height % vae_spatial_compression_ratio)
width = width - (width % vae_spatial_compression_ratio)
return height, width
# Example image for condition (replace with your own)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png")
video_for_condition = load_video(export_to_video([image])) # Create a dummy video for conditioning
condition1 = LTXVideoCondition(video=video_for_condition, frame_index=0)
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cute little penguin takes out a book and starts reading it'}"
negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" # Example
expected_height, expected_width = 480, 832 # Target final resolution
downscale_factor = 2 / 3
num_frames = 32 # Reduced for quicker example
# Part 1. Generate video at smaller resolution
downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor)
downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width, pipe.vae_spatial_compression_ratio)
latents = pipe(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width,
height=downscaled_height,
num_frames=num_frames,
num_inference_steps=7, # Example steps
guidance_scale=1.0, # Example guidance
decode_timestep = 0.05,
decode_noise_scale = 0.025,
generator=torch.Generator().manual_seed(0),
output_type="latent",
).frames
# Part 2. Upscale generated video
upscaled_latents = pipe_upsample(
latents=latents,
output_type="latent"
).frames
# Part 3. Denoise the upscaled video (optional, but recommended)
video_frames = pipe(
conditions=[condition1],
prompt=prompt,
negative_prompt=negative_prompt,
width=downscaled_width * 2, # Upscaled width
height=downscaled_height * 2, # Upscaled height
num_frames=num_frames,
denoise_strength=0.3,
num_inference_steps=10,
guidance_scale=1.0,
latents=upscaled_latents,
decode_timestep = 0.05,
decode_noise_scale = 0.025,
image_cond_noise_scale=0.025, # if using image condition
generator=torch.Generator().manual_seed(0),
output_type="pil",
).frames[0]
# Part 4. Downscale to target resolution if upscaler overshot
final_video = [frame.resize((expected_width, expected_height)) for frame in video_frames]
export_to_video(final_video, "output.mp4", fps=16) # Example fps
```
"""
elif base_hf_model.startswith("Wan-AI/Wan2.1-T2V-"):
diffusers_example = f"""
```py
import torch
from diffusers import AutoencoderKLWan, WanPipeline
from diffusers.utils import export_to_video
model_id = "{base_hf_model}"
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) # As per example
pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
{lora_loader_line}
pipe.to("cuda")
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cat walks on the grass, realistic'}"
negative_prompt = "worst quality, low quality, blurry" # Simplified for LoRA example
output = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=480, # Adjust as needed
width=832, # Adjust as needed
num_frames=30, # Adjust for LoRA, original example had 81
guidance_scale=5.0 # Adjust as needed
).frames[0]
export_to_video(output, "output.mp4", fps=15)
```
"""
elif base_hf_model.startswith("Wan-AI/Wan2.1-I2V-"):
diffusers_example = f"""
```py
import torch
import numpy as np
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
model_id = "{base_hf_model}"
# These components are part of the base model, LoRA is loaded into the pipeline
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16)
{lora_loader_line}
pipe.to("cuda")
# Replace with your image path or URL
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg"
image = load_image(image_url)
# Adjust resolution based on model capabilities (480p or 720p variants)
# This is a simplified example; refer to original Wan I2V docs for precise resolution handling
if "480P" in model_id:
max_height, max_width = 480, 832 # Example for 480p
elif "720P" in model_id:
max_height, max_width = 720, 1280 # Example for 720p
else: # Fallback
max_height, max_width = 480, 832
# Simple resize for example, optimal resizing might need to maintain aspect ratio & VAE constraints
h, w = image.height, image.width
if w > max_width or h > max_height:
aspect_ratio = w / h
if w > h:
new_w = max_width
new_h = int(new_w / aspect_ratio)
else:
new_h = max_height
new_w = int(new_h * aspect_ratio)
# Ensure dimensions are divisible by VAE scale factors (typically 8 or 16)
# This is a basic adjustment, model specific patch sizes might also matter.
patch_size_factor = 16 # Common factor
new_h = (new_h // patch_size_factor) * patch_size_factor
new_w = (new_w // patch_size_factor) * patch_size_factor
if new_h > 0 and new_w > 0:
image = image.resize((new_w, new_h))
else: # Fallback if calculations lead to zero
image = image.resize((max_width//2, max_height//2)) # A smaller safe default
else:
patch_size_factor = 16
h = (h // patch_size_factor) * patch_size_factor
w = (w // patch_size_factor) * patch_size_factor
if h > 0 and w > 0:
image = image.resize((w,h))
prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'An astronaut in a dynamic scene'}"
negative_prompt = "worst quality, low quality, blurry" # Simplified
output = pipe(
image=image,
prompt=prompt,
negative_prompt=negative_prompt,
height=image.height, # Use resized image height
width=image.width, # Use resized image width
num_frames=30, # Adjust for LoRA
guidance_scale=5.0 # Adjust as needed
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
"""
else: # Fallback for other video LoRAs
diffusers_example = f"""
```py
# This is a video LoRA. Diffusers usage for video models can vary.
# You may need to install/import specific pipeline classes from diffusers or the model's community.
# Below is a generic placeholder.
import torch
from diffusers import AutoPipelineForTextToVideo # Or the appropriate video pipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = AutoPipelineForTextToVideo.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device)
{lora_loader_line}
# The following generation command is an example and may need adjustments
# based on the specific pipeline and its required parameters for '{base_hf_model}'.
# video_frames = pipeline(prompt='{main_prompt_for_snippet}', num_frames=16).frames
# For more details, consult the Hugging Face Hub page for {base_hf_model}
# and the Diffusers documentation on LoRAs and video pipelines.
```
"""
else: # Image model
diffusers_example = f"""
```py
from diffusers import AutoPipelineForText2Image
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline = AutoPipelineForText2Image.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device)
{lora_loader_line}
image = pipeline('{main_prompt_for_snippet}').images[0]
```
"""
license_map_simple = {
"Public Domain": "public-domain",
"CreativeML Open RAIL-M": "creativeml-openrail-m",
"CreativeML Open RAIL++-M": "creativeml-openrail-m",
"openrail": "creativeml-openrail-m",
}
commercial_use = info.get("allowCommercialUse", "None")
license_identifier = "other"
license_name = "bespoke-lora-trained-license"
if isinstance(commercial_use, str) and commercial_use.lower() == "none" and not info.get("allowDerivatives", True):
license_identifier = "creativeml-openrail-m"
license_name = "CreativeML OpenRAIL-M"
bespoke_license_link = f"https://multimodal.art/civitai-licenses?allowNoCredit={info['allowNoCredit']}&allowCommercialUse={commercial_use[0] if isinstance(commercial_use, list) and commercial_use else (commercial_use if isinstance(commercial_use, str) else 'None')}&allowDerivatives={info['allowDerivatives']}&allowDifferentLicense={info['allowDifferentLicense']}"
content = f"""---
license: {license_identifier}
license_name: "{license_name}"
license_link: {bespoke_license_link}
tags:
- {unpacked_tags}
base_model: {base_hf_model}
instance_prompt: {trained_words[0] if trained_words else ''}
widget:
{widget_content.strip()}
---
# {info["name"]}
<Gallery />
{non_author_disclaimer if not is_author else ''}
{link_civit_disclaimer if link_civit else ''}
## Model description
{info["description"] if info["description"] else "No description provided."}
{trigger_words_section}
## Download model
Weights for this model are available in Safetensors format.
[Download](/{user_repo_id}/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
{diffusers_example}
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
"""
readme_content += content + "\n"
readme_path = os.path.join(folder, "README.md")
with open(readme_path, "w", encoding="utf-8") as file:
file.write(readme_content)
print(f"README.md created at {readme_path}")
# print(f"README.md content:\n{readme_content}") # For debugging
def get_creator(username):
url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D"
try:
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching creator data for {username}: {e}")
gr.Warning(f"Could not verify Civitai creator's HF link: {e}")
return None
def extract_huggingface_username(username_civitai):
data = get_creator(username_civitai)
if not data:
return None
links = data.get('result', {}).get('data', {}).get('json', {}).get('links', [])
for link in links:
url = link.get('url', '')
if 'huggingface.co/' in url:
# Extract username, handling potential variations like www. or trailing slashes
hf_username = url.split('huggingface.co/')[-1].split('/')[0]
if hf_username:
return hf_username
return None
def check_civit_link(profile: Optional[gr.OAuthProfile], url: str):
# Initial return structure: instructions_html, submit_interactive, try_again_visible, other_submit_visible, hunyuan_radio_visible
# Default to disabling/hiding things if checks fail early
default_fail_updates = ("", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
if not profile: # Should be handled by demo.load and login button
return "Please log in with Hugging Face.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
if not url or not url.startswith("https://civitai.com/models/"):
return "Please enter a valid Civitai model URL.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
try:
# We need hunyuan_type for extract_info, but we don't know it yet.
# Call get_json_data first to check if it's Hunyuan.
json_data_preview = get_json_data(url)
if not json_data_preview:
return ("Failed to fetch basic model info from Civitai. Check URL.",
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
is_hunyuan = False
original_civitai_base_model = ""
if json_data_preview.get("type") == "LORA":
for mv in json_data_preview.get("modelVersions", []):
# Try to find a relevant model version to check its base model
# This is a simplified check; extract_info does a more thorough search
cbm = mv.get("baseModel")
if cbm and cbm in SUPPORTED_CIVITAI_BASE_MODELS:
original_civitai_base_model = cbm
if cbm == "Hunyuan Video":
is_hunyuan = True
break
# Now call process_url with a default hunyuan_type for other checks
# The actual hunyuan_type choice will be used during the main upload.
info, _ = process_url(url, profile, do_download=False, hunyuan_type="Image-to-Video") # Use default for check
# If process_url raises an error (e.g. NSFW, not supported), it will be caught by Gradio
# and displayed as a gr.Error. Here, we assume it passed if no exception.
except gr.Error as e: # Catch errors from process_url (like NSFW, not supported)
return (f"Cannot process this model: {e.message}",
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)) # Show hunyuan if detected
except Exception as e: # Catch any other unexpected error during preview
print(f"Unexpected error in check_civit_link: {e}")
return (f"An unexpected error occurred: {str(e)}",
gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan))
hf_username_on_civitai = extract_huggingface_username(info['creator'])
if profile.username in TRUSTED_UPLOADERS:
return ('Admin/Trusted user override: Upload enabled.',
gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan))
if not hf_username_on_civitai:
no_username_text = (f'If you are {info["creator"]} on Civitai, hi! Your CivitAI profile does not seem to have a link to your Hugging Face account. '
f'Please visit <a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a>, '
f'go to "Edit profile" and add your Hugging Face profile URL (e.g., https://huggingface.co/{profile.username}) to the "Links" section. '
f'<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" alt="Civitai profile links example"/><br>'
f'(If you are not {info["creator"]}, you cannot submit their model at this time.)')
return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)
if profile.username.lower() != hf_username_on_civitai.lower():
unmatched_username_text = (f'Oops! The Hugging Face username found on the CivitAI profile of {info["creator"]} is '
f'"{hf_username_on_civitai}", but you are logged in as "{profile.username}". '
f'Please ensure your CivitAI profile links to the correct Hugging Face account: '
f'<a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a> (Edit profile -> Links section).'
f'<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" alt="Civitai profile links example"/>')
return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)
# All checks passed
return ('Username verified! You can now upload this model.',
gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan))
def swap_fill(profile: Optional[gr.OAuthProfile]):
if profile is None: # Not logged in
return gr.update(visible=True), gr.update(visible=False)
else: # Logged in
return gr.update(visible=False), gr.update(visible=True)
def show_output():
return gr.update(visible=True)
def list_civit_models(username_civitai: str):
if not username_civitai:
return ""
url = f"https://civitai.com/api/v1/models?username={username_civitai}&limit=100&sort=Newest" # Added sort
all_model_urls = ""
page_count = 0
max_pages = 5 # Limit number of pages to fetch to avoid very long requests
while url and page_count < max_pages:
try:
response = requests.get(url, timeout=10)
response.raise_for_status()
data = response.json()
except requests.exceptions.RequestException as e:
print(f"Error fetching model list for {username_civitai}: {e}")
gr.Warning(f"Could not fetch full model list for {username_civitai}.")
break
items = data.get('items', [])
if not items:
break
for model in items:
# Only list LORAs of supported base model types to avoid cluttering with unsupported ones
is_supported_lora = False
if model.get("type") == "LORA":
# Check modelVersions for baseModel compatibility
for mv in model.get("modelVersions", []):
if mv.get("baseModel") in SUPPORTED_CIVITAI_BASE_MODELS:
is_supported_lora = True
break
if is_supported_lora:
model_slug = slugify(model.get("name", f"model-{model['id']}"))
all_model_urls += f'https://civitai.com/models/{model["id"]}/{model_slug}\n'
metadata = data.get('metadata', {})
url = metadata.get('nextPage', None)
page_count += 1
if page_count >= max_pages and url:
print(f"Reached max page limit for fetching models for {username_civitai}.")
gr.Info(f"Showing first {max_pages*100} models. There might be more.")
if not all_model_urls:
gr.Info(f"No compatible LoRA models found for user {username_civitai} or user not found.")
return all_model_urls.strip()
def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], url: str, link_civit: bool, hunyuan_type: str):
if not profile or not profile.username: # Check profile and username
raise gr.Error("You must be logged in to Hugging Face to upload.")
if not oauth_token or not oauth_token.token:
raise gr.Error("Hugging Face authentication token is missing or invalid. Please log out and log back in.")
folder = str(uuid.uuid4())
os.makedirs(folder, exist_ok=True) # exist_ok=True is safer if folder might exist
gr.Info(f"Starting processing for model {url}")
try:
# Pass hunyuan_type to process_url
info, downloaded_files_summary = process_url(url, profile, do_download=True, folder=folder, hunyuan_type=hunyuan_type)
except gr.Error as e: # Catch errors from process_url (NSFW, not supported, API fail)
# Cleanup created folder if download failed or was skipped
if os.path.exists(folder):
try:
import shutil
shutil.rmtree(folder)
except Exception as clean_e:
print(f"Error cleaning up folder {folder}: {clean_e}")
raise e # Re-raise the Gradio error to display it
if not downloaded_files_summary.get("weightName"):
raise gr.Error("No model weight file was downloaded. Cannot proceed with upload.")
# Determine if user is the author for README generation
# This relies on extract_huggingface_username which needs COOKIE_INFO
is_author = False
if "COOKIE_INFO" in os.environ:
hf_username_on_civitai = extract_huggingface_username(info['creator'])
if hf_username_on_civitai and profile.username.lower() == hf_username_on_civitai.lower():
is_author = True
elif profile.username.lower() == info['creator'].lower(): # Fallback if cookie not set, direct match
is_author = True
slug_name = slugify(info["name"])
user_repo_id = f"{profile.username}/{slug_name}"
gr.Info(f"Creating README for {user_repo_id}...")
create_readme(info, downloaded_files_summary, user_repo_id, link_civit, is_author, folder=folder)
try:
gr.Info(f"Creating repository {user_repo_id} on Hugging Face...")
create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token)
gr.Info(f"Starting upload of all files to {user_repo_id}...")
upload_folder(
folder_path=folder,
repo_id=user_repo_id,
repo_type="model",
token=oauth_token.token,
commit_message=f"Upload LoRA: {info['name']} from Civitai model ID {info['modelId']}" # Add commit message
)
gr.Info(f"Setting repository {user_repo_id} to public...")
update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token)
gr.Info(f"Model {info['name']} uploaded successfully to {user_repo_id}!")
except Exception as e:
print(f"Error during Hugging Face repo operations for {user_repo_id}: {e}")
# Attempt to provide a more specific error message for token issues
if "401" in str(e) or "Unauthorized" in str(e):
raise gr.Error("Hugging Face authentication failed (e.g. token expired or insufficient permissions). Please log out and log back in with a token that has write permissions.")
raise gr.Error(f"Error during Hugging Face upload: {str(e)}")
finally:
# Clean up the temporary folder
if os.path.exists(folder):
try:
import shutil
shutil.rmtree(folder)
print(f"Cleaned up temporary folder: {folder}")
except Exception as clean_e:
print(f"Error cleaning up folder {folder}: {clean_e}")
return f"""# Model uploaded to 🤗!
Access it here: [{user_repo_id}](https://huggingface.co/{user_repo_id})
"""
def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], urls_text: str, link_civit: bool, hunyuan_type: str):
if not urls_text.strip():
return "No URLs provided for bulk upload."
urls = [url.strip() for url in urls_text.split("\n") if url.strip()]
if not urls:
return "No valid URLs found in the input."
upload_results_md = "## Bulk Upload Results:\n\n"
success_count = 0
failure_count = 0
for i, url in enumerate(urls):
gr.Info(f"Processing URL {i+1}/{len(urls)}: {url}")
try:
result = upload_civit_to_hf(profile, oauth_token, url, link_civit, hunyuan_type)
upload_results_md += f"**SUCCESS**: {url}\n{result}\n\n---\n\n"
success_count +=1
except gr.Error as e: # Catch Gradio-raised errors (expected failures)
upload_results_md += f"**FAILED**: {url}\n*Reason*: {e.message}\n\n---\n\n"
gr.Warning(f"Failed to upload {url}: {e.message}")
failure_count +=1
except Exception as e: # Catch unexpected Python errors
upload_results_md += f"**FAILED**: {url}\n*Unexpected Error*: {str(e)}\n\n---\n\n"
gr.Warning(f"Unexpected error uploading {url}: {str(e)}")
failure_count +=1
summary = f"Finished bulk upload: {success_count} successful, {failure_count} failed."
gr.Info(summary)
upload_results_md = f"## {summary}\n\n" + upload_results_md
return upload_results_md
# --- Gradio UI ---
css = '''
#login_button_row button { /* Target login button specifically */
width: 100% !important;
margin: 0 auto;
}
#disabled_upload_area { /* ID for the disabled area */
opacity: 0.5;
pointer-events: none;
}
'''
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: # Added a theme
gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face 🤗
By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget (for many models)
''')
with gr.Row(elem_id="login_button_row"):
login_button = gr.LoginButton() # Moved login_button definition here
# Area shown when not logged in (or login fails)
with gr.Column(elem_id="disabled_upload_area", visible=True) as disabled_area:
gr.HTML("<i>Please log in with Hugging Face to enable uploads.</i>")
# Add some dummy placeholders to mirror the enabled_area structure if needed for consistent layout
gr.Textbox(label="CivitAI model URL (Log in to enable)", interactive=False)
gr.Button("Upload (Log in to enable)", interactive=False)
# Area shown when logged in
with gr.Column(visible=False) as enabled_area:
with gr.Row():
submit_source_civit_enabled = gr.Textbox(
placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl",
label="CivitAI model URL",
info="URL of the CivitAI LoRA model page.",
elem_id="submit_source_civit_main" # Unique ID
)
hunyuan_type_radio = gr.Radio(
choices=["Image-to-Video", "Text-to-Video"],
label="HunyuanVideo Type (Select if model is Hunyuan Video)",
value="Image-to-Video", # Default as per prompt
visible=False, # Initially hidden
interactive=True
)
link_civit_checkbox = gr.Checkbox(label="Link back to original CivitAI page in README?", value=False)
with gr.Accordion("Bulk Upload (Multiple LoRAs)", open=False):
civit_username_to_bulk = gr.Textbox(
label="Your CivitAI Username (Optional)",
info="Type your CivitAI username here to automatically populate the list below with your compatible LoRAs."
)
submit_bulk_civit_urls = gr.Textbox(
label="CivitAI Model URLs (One per line)",
info="Add one CivitAI model URL per line for bulk processing.",
lines=6,
)
bulk_button = gr.Button("Start Bulk Upload")
instructions_html = gr.HTML("") # For messages from check_civit_link
# Buttons for single upload
# try_again_button is shown if username check fails
try_again_button_single = gr.Button("I've updated my CivitAI profile, check again", visible=False)
# submit_button_single is the main upload button for single model
submit_button_single = gr.Button("Upload Model to Hugging Face", interactive=False, variant="primary")
output_markdown = gr.Markdown(label="Upload Progress & Results", visible=False)
# Event Handling
# When login status changes (login_button implicitly handles profile state for demo.load)
# demo.load updates visibility of disabled_area and enabled_area based on login.
# The `profile` argument is implicitly passed by Gradio to functions that declare it.
# `oauth_token` is also implicitly passed if `login_button` is used and function expects `gr.OAuthToken`.
# When URL changes in the enabled area
submit_source_civit_enabled.change(
fn=check_civit_link,
inputs=[submit_source_civit_enabled], # profile is implicitly passed
outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio],
# Outputs map to: instructions, submit_interactive, try_again_visible, (submit_visible - seems redundant here, check_civit_link logic ensures one is visible), hunyuan_radio_visible
# For submit_button_single: 2nd output controls 'interactive', 4th controls 'visible' (often paired with try_again_button's visibility)
)
# Try again button for single upload (re-checks the same URL)
try_again_button_single.click(
fn=check_civit_link,
inputs=[submit_source_civit_enabled],
outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio],
)
# Autofill bulk URLs from CivitAI username
civit_username_to_bulk.change(
fn=list_civit_models,
inputs=[civit_username_to_bulk],
outputs=[submit_bulk_civit_urls]
)
# Single model upload button click
submit_button_single.click(fn=show_output, outputs=[output_markdown]).then(
fn=upload_civit_to_hf,
inputs=[submit_source_civit_enabled, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit
outputs=[output_markdown]
)
# Bulk model upload button click
bulk_button.click(fn=show_output, outputs=[output_markdown]).then(
fn=bulk_upload,
inputs=[submit_bulk_civit_urls, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit
outputs=[output_markdown]
)
# Initial state of visible areas based on login status
demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False)
demo.queue(default_concurrency_limit=5) # Reduced concurrency from 50, can be demanding
demo.launch(debug=True) # Added debug=True for development |