import requests import os import gradio as gr from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file # Removed duplicate update_repo_visibility from slugify import slugify # import gradio as gr # Already imported import re import uuid from typing import Optional, Dict, Any import json # from bs4 import BeautifulSoup # Not used TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"] # --- Model Mappings --- MODEL_MAPPING_IMAGE = { "SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0", "SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0", # Usually mapped to 1.0 "SD 1.5": "runwayml/stable-diffusion-v1-5", "SD 1.4": "CompVis/stable-diffusion-v1-4", "SD 2.1": "stabilityai/stable-diffusion-2-1-base", "SD 2.0": "stabilityai/stable-diffusion-2-base", "SD 2.1 768": "stabilityai/stable-diffusion-2-1", "SD 2.0 768": "stabilityai/stable-diffusion-2", "SD 3": "stabilityai/stable-diffusion-3-medium-diffusers", # Assuming medium, adjust if others are common "SD 3.5": "stabilityai/stable-diffusion-3.5-large", # Assuming large, adjust "SD 3.5 Large": "stabilityai/stable-diffusion-3.5-large", "SD 3.5 Medium": "stabilityai/stable-diffusion-3.5-medium", "SD 3.5 Large Turbo": "stabilityai/stable-diffusion-3.5-large-turbo", "Flux.1 D": "black-forest-labs/FLUX.1-dev", "Flux.1 S": "black-forest-labs/FLUX.1-schnell", } MODEL_MAPPING_VIDEO = { "LTXV": "Lightricks/LTX-Video-0.9.7-dev", "Wan Video 1.3B t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers", "Wan Video 14B t2v": "Wan-AI/Wan2.1-T2V-14B-Diffusers", "Wan Video 14B i2v 480p": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers", "Wan Video 14B i2v 720p": "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers", "Hunyuan Video": "hunyuanvideo-community/HunyuanVideo-I2V", # Default, will be overridden by choice } SUPPORTED_CIVITAI_BASE_MODELS = list(MODEL_MAPPING_IMAGE.keys()) + list(MODEL_MAPPING_VIDEO.keys()) cookie_info = os.environ.get("COOKIE_INFO") headers = { "authority": "civitai.com", "accept": "*/*", "accept-language": "en-US,en;q=0.9", # Simplified "content-type": "application/json", "cookie": cookie_info, # Use the env var "sec-ch-ua": "\"Chromium\";v=\"118\", \"Not_A Brand\";v=\"99\"", # Example, update if needed "sec-ch-ua-mobile": "?0", "sec-ch-ua-platform": "\"Windows\"", # Example "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-origin", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/118.0.0.0 Safari/537.36" # Example } def get_json_data(url): url_split = url.split('/') if len(url_split) < 5 or not url_split[4].isdigit(): print(f"Invalid Civitai URL format or model ID not found: {url}") gr.Warning(f"Invalid Civitai URL format. Ensure it's like 'https://civitai.com/models/YOUR_MODEL_ID/MODEL_NAME'. Problem with: {url}") return None api_url = f"https://civitai.com/api/v1/models/{url_split[4]}" try: response = requests.get(api_url) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: print(f"Error fetching JSON data from {api_url}: {e}") gr.Warning(f"Error fetching data from Civitai API for {url_split[4]}: {e}") return None def check_nsfw(json_data: Dict[str, Any], profile: Optional[gr.OAuthProfile]) -> bool: if not json_data: return False # Should not happen if get_json_data succeeded # Overall model boolean flag - highest priority if json_data.get("nsfw", False): print("Model flagged as NSFW by 'nsfw: true'.") gr.Info("Reason: Model explicitly flagged as NSFW on Civitai.") return False # Unsafe # Overall model numeric nsfwLevel - second priority. Max allowed is 5 (nsfwLevel < 6). # nsfwLevel definitions: None (1), Mild (2), Mature (4), Adult (5), X (8), R (16), XXX (32) model_nsfw_level = json_data.get("nsfwLevel", 0) if model_nsfw_level > 5: # Anything above "Adult" print(f"Model's overall nsfwLevel ({model_nsfw_level}) is > 5. Blocking.") gr.Info(f"Reason: Model's overall NSFW Level ({model_nsfw_level}) is above the allowed threshold (5).") return False # Unsafe # If uploader is trusted and the above checks passed, they bypass further version/image checks. if profile and profile.username in TRUSTED_UPLOADERS: print(f"User {profile.username} is trusted. Model 'nsfw' is false and overall nsfwLevel ({model_nsfw_level}) is <= 5. Allowing.") return True # For non-trusted users, check nsfwLevel of model versions and individual images/videos for model_version in json_data.get("modelVersions", []): version_nsfw_level = model_version.get("nsfwLevel", 0) if version_nsfw_level > 5: print(f"Model version nsfwLevel ({version_nsfw_level}) is > 5 for non-trusted user. Blocking.") gr.Info(f"Reason: A model version's NSFW Level ({version_nsfw_level}) is above 5.") return False return True # Safe for non-trusted user if all checks pass def get_prompts_from_image(image_id_str: str): # image_id_str could be non-numeric if URL parsing failed or format changed try: image_id = int(image_id_str) except ValueError: print(f"Invalid image_id_str for TRPC call: {image_id_str}. Skipping prompt fetch.") return "", "" print(f"Fetching prompts for image_id: {image_id}") url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}' prompt = "" negative_prompt = "" try: response = requests.get(url, headers=headers, timeout=10) # Added timeout response.raise_for_status() # Will raise an HTTPError if the HTTP request returned an unsuccessful status code data = response.json() print("Response from image: ", data) # Expected structure: {'result': {'data': {'json': {'meta': {'prompt': '...', 'negativePrompt': '...'}}}}} meta = data.get('result', {}).get('data', {}).get('json', {}).get('meta') if meta: # meta can be None prompt = meta.get('prompt', "") negative_prompt = meta.get('negativePrompt', "") except requests.exceptions.RequestException as e: print(f"Could not fetch/parse generation data for image_id {image_id}: {e}") except json.JSONDecodeError as e: print(f"JSONDecodeError for image_id {image_id}: {e}. Response content: {response.text[:200]}") return prompt, negative_prompt def extract_info(json_data: Dict[str, Any], hunyuan_type: Optional[str] = None) -> Optional[Dict[str, Any]]: if json_data.get("type") != "LORA": print("Model type is not LORA.") return None for model_version in json_data.get("modelVersions", []): civitai_base_model_name = model_version.get("baseModel") if civitai_base_model_name in SUPPORTED_CIVITAI_BASE_MODELS: base_model_hf = "" is_video = False if civitai_base_model_name == "Hunyuan Video": is_video = True if hunyuan_type == "Text-to-Video": base_model_hf = "hunyuanvideo-community/HunyuanVideo" else: # Default or "Image-to-Video" base_model_hf = "hunyuanvideo-community/HunyuanVideo-I2V" elif civitai_base_model_name in MODEL_MAPPING_VIDEO: is_video = True base_model_hf = MODEL_MAPPING_VIDEO[civitai_base_model_name] elif civitai_base_model_name in MODEL_MAPPING_IMAGE: base_model_hf = MODEL_MAPPING_IMAGE[civitai_base_model_name] else: print(f"Logic error: {civitai_base_model_name} in supported list but not mapped.") continue primary_file_info = None for file_entry in model_version.get("files", []): if file_entry.get("primary", False) and file_entry.get("type") == "Model": primary_file_info = file_entry break if not primary_file_info: for file_entry in model_version.get("files", []): if file_entry.get("type") == "Model" and file_entry.get("name","").endswith(".safetensors"): primary_file_info = file_entry print(f"Using first safetensors file as primary: {primary_file_info['name']}") break if not primary_file_info: print(f"No primary or suitable safetensors model file found for version {model_version.get('name')}") continue urls_to_download = [{"url": primary_file_info["downloadUrl"], "filename": primary_file_info["name"], "type": "weightName"}] for image_obj in model_version.get("images", []): image_url = image_obj.get("url") if not image_url: continue image_nsfw_level = image_obj.get("nsfwLevel", 0) if image_nsfw_level > 5: continue filename_part = os.path.basename(image_url) image_id_str = filename_part.split('.')[0] prompt, negative_prompt = "", "" if image_obj.get("hasMeta", False): prompt, negative_prompt = get_prompts_from_image(image_id_str) urls_to_download.append({ "url": image_url, "filename": filename_part, "type": "imageName", "prompt": prompt, "negative_prompt": negative_prompt, "media_type": image_obj.get("type", "image") }) info = { "urls_to_download": urls_to_download, "id": model_version["id"], "baseModel": base_model_hf, "civitai_base_model_name": civitai_base_model_name, "is_video_model": is_video, "modelId": json_data.get("id", ""), "name": json_data["name"], "description": json_data.get("description", ""), "trainedWords": model_version.get("trainedWords", []), "creator": json_data.get("creator", {}).get("username", "Unknown"), "tags": json_data.get("tags", []), "allowNoCredit": json_data.get("allowNoCredit", True), "allowCommercialUse": json_data.get("allowCommercialUse", "Sell"), "allowDerivatives": json_data.get("allowDerivatives", True), "allowDifferentLicense": json_data.get("allowDifferentLicense", True) } return info print("No suitable model version found with a supported base model.") return None def download_files(info, folder="."): downloaded_files = { "imageName": [], # Will contain both image and video filenames "imagePrompt": [], "imageNegativePrompt": [], "weightName": [], "mediaType": [] # To distinguish image/video for gallery if needed later } for item in info["urls_to_download"]: # Ensure filename is safe for filesystem safe_filename = slugify(item["filename"].rsplit('.', 1)[0]) + '.' + item["filename"].rsplit('.', 1)[-1] if '.' in item["filename"] else slugify(item["filename"]) # Civitai URLs might need auth for direct download if not public try: download_file_with_auth(item["url"], safe_filename, folder) # Changed to use the auth-aware download downloaded_files[item["type"]].append(safe_filename) if item["type"] == "imageName": # This list now includes videos too prompt_clean = re.sub(r'<.*?>', '', item.get("prompt", "")) negative_prompt_clean = re.sub(r'<.*?>', '', item.get("negative_prompt", "")) downloaded_files["imagePrompt"].append(prompt_clean) downloaded_files["imageNegativePrompt"].append(negative_prompt_clean) downloaded_files["mediaType"].append(item.get("media_type", "image")) except gr.Error as e: # Catch Gradio errors from download_file_with_auth print(f"Skipping file {safe_filename} due to download error: {e.message}") gr.Warning(f"Skipping file {safe_filename} due to download error: {e.message}") return downloaded_files # Renamed original download_file to download_file_with_auth def download_file_with_auth(url, filename, folder="."): headers = {} # Add CIVITAI_API_TOKEN if available, for potentially restricted downloads # Note: The prompt example didn't use it for image URLs, only for the model file via API. # However, some image/video URLs might also require it if they are not fully public. if "CIVITAI_API_TOKEN" in os.environ: # Changed from CIVITAI_API headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API_TOKEN"]}' try: response = requests.get(url, headers=headers, stream=True, timeout=60) # Added stream and timeout response.raise_for_status() except requests.exceptions.HTTPError as e: print(f"HTTPError downloading {url}: {e}") # No automatic retry with token here as it was specific to the primary file in original code # If it was related to auth, the initial header should have helped. raise gr.Error(f"Error downloading file {filename}: {e}") except requests.exceptions.RequestException as e: print(f"RequestException downloading {url}: {e}") raise gr.Error(f"Error downloading file {filename}: {e}") filepath = os.path.join(folder, filename) with open(filepath, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) print(f"Successfully downloaded {filepath}") def process_url(url, profile, do_download=True, folder=".", hunyuan_type: Optional[str] = None): json_data = get_json_data(url) if json_data: if check_nsfw(json_data, profile): info = extract_info(json_data, hunyuan_type=hunyuan_type) if info: downloaded_files_summary = {} if do_download: gr.Info(f"Downloading files for {info['name']}...") downloaded_files_summary = download_files(info, folder) gr.Info(f"Finished downloading files for {info['name']}.") return info, downloaded_files_summary else: raise gr.Error("LoRA extraction failed. The base model might not be supported, or it's not a LoRA model, or no suitable files found in the version.") else: # check_nsfw now prints detailed reasons via gr.Info/print raise gr.Error("This model has content tagged as unsafe by CivitAI or exceeds NSFW level limits.") else: raise gr.Error("Failed to fetch model data from CivitAI API. Please check the URL and Civitai's status.") def create_readme(info: Dict[str, Any], downloaded_files: Dict[str, Any], user_repo_id: str, link_civit: bool = False, is_author: bool = True, folder: str = "."): readme_content = "" original_url = f"https://civitai.com/models/{info['modelId']}" if info.get('modelId') else "CivitAI (ID not found)" link_civit_disclaimer = f'([CivitAI]({original_url}))' non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:' is_video = info.get("is_video_model", False) base_hf_model = info["baseModel"] # This is the HF model ID civitai_bm_name_lower = info.get("civitai_base_model_name", "").lower() if is_video: default_tags = ["lora", "diffusers", "migrated", "video"] if "template:" not in " ".join(info.get("tags", [])): default_tags.append("template:video-lora") if "t2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo")): default_tags.append("text-to-video") elif "i2v" in civitai_bm_name_lower or (civitai_bm_name_lower == "hunyuan video" and base_hf_model.endswith("HunyuanVideo-I2V")): default_tags.append("image-to-video") else: default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "migrated"] if "template:" not in " ".join(info.get("tags", [])): default_tags.append("template:sd-lora") civit_tags_raw = info.get("tags", []) civit_tags_clean = [t.replace(":", "").strip() for t in civit_tags_raw if t.replace(":", "").strip()] final_civit_tags = [tag for tag in civit_tags_clean if tag not in default_tags and tag.lower() not in default_tags] tags = default_tags + final_civit_tags unpacked_tags = "\n- ".join(sorted(list(set(tags)))) trained_words = info.get('trainedWords', []) formatted_words = ', '.join(f'`{word}`' for word in trained_words if word) trigger_words_section = f"## Trigger words\nYou should use {formatted_words} to trigger the generation." if formatted_words else "" widget_content = "" max_widget_items = 5 items_for_widget = list(zip( downloaded_files.get("imagePrompt", []), downloaded_files.get("imageNegativePrompt", []), downloaded_files.get("imageName", []) ))[:max_widget_items] for index, (prompt, negative_prompt, media_filename) in enumerate(items_for_widget): escaped_prompt = prompt.replace("'", "''") if prompt else ' ' base_media_filename = os.path.basename(media_filename) negative_prompt_content = f"negative_prompt: {negative_prompt}\n" if negative_prompt else "" # Corrected YAML for widget: widget_content += f"""- text: '{escaped_prompt}' {negative_prompt_content} output: url: >- {base_media_filename} """ if base_hf_model in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]: dtype = "torch.bfloat16" else: dtype = "torch.float16" # Default for others, Hunyuan examples specify this. main_prompt_for_snippet_raw = formatted_words if formatted_words else 'Your custom prompt' if items_for_widget and items_for_widget[0][0]: main_prompt_for_snippet_raw = items_for_widget[0][0] # Escape single quotes for Python string literals main_prompt_for_snippet = main_prompt_for_snippet_raw.replace("'", "\\'") lora_loader_line = f"pipe.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files.get('weightName', ['your_lora.safetensors'])[0]}')" diffusers_example = "" if is_video: if base_hf_model == "hunyuanvideo-community/HunyuanVideo-I2V": diffusers_example = f""" ```py import torch from diffusers import HunyuanVideoImageToVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import load_image, export_to_video # Available checkpoints: "hunyuanvideo-community/HunyuanVideo-I2V" and "hunyuanvideo-community/HunyuanVideo-I2V-33ch" model_id = "{base_hf_model}" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 # Explicitly bfloat16 for transformer ) pipe = HunyuanVideoImageToVideoPipeline.from_pretrained( model_id, transformer=transformer, torch_dtype=torch.float16 # float16 for pipeline ) pipe.vae.enable_tiling() {lora_loader_line} pipe.to("cuda") prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A detailed scene description'}" # Replace with your image path or URL image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/guitar-man.png" image = load_image(image_url) output = pipe(image=image, prompt=prompt).frames[0] export_to_video(output, "output.mp4", fps=15) ``` """ elif base_hf_model == "hunyuanvideo-community/HunyuanVideo": diffusers_example = f""" ```py import torch from diffusers import HunyuanVideoPipeline, HunyuanVideoTransformer3DModel from diffusers.utils import export_to_video model_id = "{base_hf_model}" transformer = HunyuanVideoTransformer3DModel.from_pretrained( model_id, subfolder="transformer", torch_dtype=torch.bfloat16 ) pipe = HunyuanVideoPipeline.from_pretrained(model_id, transformer=transformer, torch_dtype=torch.float16) {lora_loader_line} # Enable memory savings pipe.vae.enable_tiling() pipe.enable_model_cpu_offload() # Optional: if VRAM is limited output = pipe( prompt="{main_prompt_for_snippet if main_prompt_for_snippet else 'A cinematic video scene'}", height=320, # Adjust as needed width=512, # Adjust as needed num_frames=61, # Adjust as needed num_inference_steps=30, # Adjust as needed ).frames[0] export_to_video(output, "output.mp4", fps=15) ``` """ elif base_hf_model == "Lightricks/LTX-Video-0.9.7-dev" or base_hf_model == "Lightricks/LTX-Video-0.9.7-distilled": # Assuming -dev is the one from mapping # Note: The LTX example is complex. We'll simplify a bit for a LoRA example. # The user might need to adapt the full pipeline if they used the distilled one directly. # We assume the LoRA is trained on the main LTX pipeline. diffusers_example = f""" ```py import torch from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.pipelines.ltx.pipeline_ltx_condition import LTXVideoCondition from diffusers.utils import export_to_video, load_image, load_video # Use the base LTX model your LoRA was trained on. The example below uses the distilled version. # Adjust if your LoRA is for the non-distilled "Lightricks/LTX-Video-0.9.7-dev". pipe = LTXConditionPipeline.from_pretrained("Lightricks/LTX-Video-0.9.7-distilled", torch_dtype=torch.bfloat16) {lora_loader_line} # The LTX upsampler is separate and typically doesn't have LoRAs loaded into it directly. pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained("Lightricks/ltxv-spatial-upscaler-0.9.7", vae=pipe.vae, torch_dtype=torch.bfloat16) pipe.to("cuda") pipe_upsample.to("cuda") pipe.vae.enable_tiling() def round_to_nearest_resolution_acceptable_by_vae(height, width, vae_spatial_compression_ratio): height = height - (height % vae_spatial_compression_ratio) width = width - (width % vae_spatial_compression_ratio) return height, width # Example image for condition (replace with your own) image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/penguin.png") video_for_condition = load_video(export_to_video([image])) # Create a dummy video for conditioning condition1 = LTXVideoCondition(video=video_for_condition, frame_index=0) prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cute little penguin takes out a book and starts reading it'}" negative_prompt = "worst quality, inconsistent motion, blurry, jittery, distorted" # Example expected_height, expected_width = 480, 832 # Target final resolution downscale_factor = 2 / 3 num_frames = 32 # Reduced for quicker example # Part 1. Generate video at smaller resolution downscaled_height, downscaled_width = int(expected_height * downscale_factor), int(expected_width * downscale_factor) downscaled_height, downscaled_width = round_to_nearest_resolution_acceptable_by_vae(downscaled_height, downscaled_width, pipe.vae_spatial_compression_ratio) latents = pipe( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width, height=downscaled_height, num_frames=num_frames, num_inference_steps=7, # Example steps guidance_scale=1.0, # Example guidance decode_timestep = 0.05, decode_noise_scale = 0.025, generator=torch.Generator().manual_seed(0), output_type="latent", ).frames # Part 2. Upscale generated video upscaled_latents = pipe_upsample( latents=latents, output_type="latent" ).frames # Part 3. Denoise the upscaled video (optional, but recommended) video_frames = pipe( conditions=[condition1], prompt=prompt, negative_prompt=negative_prompt, width=downscaled_width * 2, # Upscaled width height=downscaled_height * 2, # Upscaled height num_frames=num_frames, denoise_strength=0.3, num_inference_steps=10, guidance_scale=1.0, latents=upscaled_latents, decode_timestep = 0.05, decode_noise_scale = 0.025, image_cond_noise_scale=0.025, # if using image condition generator=torch.Generator().manual_seed(0), output_type="pil", ).frames[0] # Part 4. Downscale to target resolution if upscaler overshot final_video = [frame.resize((expected_width, expected_height)) for frame in video_frames] export_to_video(final_video, "output.mp4", fps=16) # Example fps ``` """ elif base_hf_model.startswith("Wan-AI/Wan2.1-T2V-"): diffusers_example = f""" ```py import torch from diffusers import AutoencoderKLWan, WanPipeline from diffusers.utils import export_to_video model_id = "{base_hf_model}" vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) # As per example pipe = WanPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16) {lora_loader_line} pipe.to("cuda") prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'A cat walks on the grass, realistic'}" negative_prompt = "worst quality, low quality, blurry" # Simplified for LoRA example output = pipe( prompt=prompt, negative_prompt=negative_prompt, height=480, # Adjust as needed width=832, # Adjust as needed num_frames=30, # Adjust for LoRA, original example had 81 guidance_scale=5.0 # Adjust as needed ).frames[0] export_to_video(output, "output.mp4", fps=15) ``` """ elif base_hf_model.startswith("Wan-AI/Wan2.1-I2V-"): diffusers_example = f""" ```py import torch import numpy as np from diffusers import AutoencoderKLWan, WanImageToVideoPipeline from diffusers.utils import export_to_video, load_image from transformers import CLIPVisionModel model_id = "{base_hf_model}" # These components are part of the base model, LoRA is loaded into the pipeline image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32) vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32) pipe = WanImageToVideoPipeline.from_pretrained(model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16) {lora_loader_line} pipe.to("cuda") # Replace with your image path or URL image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" image = load_image(image_url) # Adjust resolution based on model capabilities (480p or 720p variants) # This is a simplified example; refer to original Wan I2V docs for precise resolution handling if "480P" in model_id: max_height, max_width = 480, 832 # Example for 480p elif "720P" in model_id: max_height, max_width = 720, 1280 # Example for 720p else: # Fallback max_height, max_width = 480, 832 # Simple resize for example, optimal resizing might need to maintain aspect ratio & VAE constraints h, w = image.height, image.width if w > max_width or h > max_height: aspect_ratio = w / h if w > h: new_w = max_width new_h = int(new_w / aspect_ratio) else: new_h = max_height new_w = int(new_h * aspect_ratio) # Ensure dimensions are divisible by VAE scale factors (typically 8 or 16) # This is a basic adjustment, model specific patch sizes might also matter. patch_size_factor = 16 # Common factor new_h = (new_h // patch_size_factor) * patch_size_factor new_w = (new_w // patch_size_factor) * patch_size_factor if new_h > 0 and new_w > 0: image = image.resize((new_w, new_h)) else: # Fallback if calculations lead to zero image = image.resize((max_width//2, max_height//2)) # A smaller safe default else: patch_size_factor = 16 h = (h // patch_size_factor) * patch_size_factor w = (w // patch_size_factor) * patch_size_factor if h > 0 and w > 0: image = image.resize((w,h)) prompt = "{main_prompt_for_snippet if main_prompt_for_snippet else 'An astronaut in a dynamic scene'}" negative_prompt = "worst quality, low quality, blurry" # Simplified output = pipe( image=image, prompt=prompt, negative_prompt=negative_prompt, height=image.height, # Use resized image height width=image.width, # Use resized image width num_frames=30, # Adjust for LoRA guidance_scale=5.0 # Adjust as needed ).frames[0] export_to_video(output, "output.mp4", fps=16) ``` """ else: # Fallback for other video LoRAs diffusers_example = f""" ```py # This is a video LoRA. Diffusers usage for video models can vary. # You may need to install/import specific pipeline classes from diffusers or the model's community. # Below is a generic placeholder. import torch from diffusers import AutoPipelineForTextToVideo # Or the appropriate video pipeline device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForTextToVideo.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device) {lora_loader_line} # The following generation command is an example and may need adjustments # based on the specific pipeline and its required parameters for '{base_hf_model}'. # video_frames = pipeline(prompt='{main_prompt_for_snippet}', num_frames=16).frames # For more details, consult the Hugging Face Hub page for {base_hf_model} # and the Diffusers documentation on LoRAs and video pipelines. ``` """ else: # Image model diffusers_example = f""" ```py from diffusers import AutoPipelineForText2Image import torch device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = AutoPipelineForText2Image.from_pretrained('{base_hf_model}', torch_dtype={dtype}).to(device) {lora_loader_line} image = pipeline('{main_prompt_for_snippet}').images[0] ``` """ license_map_simple = { "Public Domain": "public-domain", "CreativeML Open RAIL-M": "creativeml-openrail-m", "CreativeML Open RAIL++-M": "creativeml-openrail-m", "openrail": "creativeml-openrail-m", } commercial_use = info.get("allowCommercialUse", "None") license_identifier = "other" license_name = "bespoke-lora-trained-license" if isinstance(commercial_use, str) and commercial_use.lower() == "none" and not info.get("allowDerivatives", True): license_identifier = "creativeml-openrail-m" license_name = "CreativeML OpenRAIL-M" bespoke_license_link = f"https://multimodal.art/civitai-licenses?allowNoCredit={info['allowNoCredit']}&allowCommercialUse={commercial_use[0] if isinstance(commercial_use, list) and commercial_use else (commercial_use if isinstance(commercial_use, str) else 'None')}&allowDerivatives={info['allowDerivatives']}&allowDifferentLicense={info['allowDifferentLicense']}" content = f"""--- license: {license_identifier} license_name: "{license_name}" license_link: {bespoke_license_link} tags: - {unpacked_tags} base_model: {base_hf_model} instance_prompt: {trained_words[0] if trained_words else ''} widget: {widget_content.strip()} --- # {info["name"]} {non_author_disclaimer if not is_author else ''} {link_civit_disclaimer if link_civit else ''} ## Model description {info["description"] if info["description"] else "No description provided."} {trigger_words_section} ## Download model Weights for this model are available in Safetensors format. [Download](/{user_repo_id}/tree/main) them in the Files & versions tab. ## Use it with the [๐Ÿงจ diffusers library](https://github.com/huggingface/diffusers) {diffusers_example} For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) """ readme_content += content + "\n" readme_path = os.path.join(folder, "README.md") with open(readme_path, "w", encoding="utf-8") as file: file.write(readme_content) print(f"README.md created at {readme_path}") # print(f"README.md content:\n{readme_content}") # For debugging def get_creator(username): url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D" try: response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() return response.json() except requests.exceptions.RequestException as e: print(f"Error fetching creator data for {username}: {e}") gr.Warning(f"Could not verify Civitai creator's HF link: {e}") return None def extract_huggingface_username(username_civitai): data = get_creator(username_civitai) if not data: return None links = data.get('result', {}).get('data', {}).get('json', {}).get('links', []) for link in links: url = link.get('url', '') if 'huggingface.co/' in url: # Extract username, handling potential variations like www. or trailing slashes hf_username = url.split('huggingface.co/')[-1].split('/')[0] if hf_username: return hf_username return None def check_civit_link(profile: Optional[gr.OAuthProfile], url: str): # Initial return structure: instructions_html, submit_interactive, try_again_visible, other_submit_visible, hunyuan_radio_visible # Default to disabling/hiding things if checks fail early default_fail_updates = ("", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)) if not profile: # Should be handled by demo.load and login button return "Please log in with Hugging Face.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) if not url or not url.startswith("https://civitai.com/models/"): return "Please enter a valid Civitai model URL.", gr.update(interactive=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) try: # We need hunyuan_type for extract_info, but we don't know it yet. # Call get_json_data first to check if it's Hunyuan. json_data_preview = get_json_data(url) if not json_data_preview: return ("Failed to fetch basic model info from Civitai. Check URL.", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)) is_hunyuan = False original_civitai_base_model = "" if json_data_preview.get("type") == "LORA": for mv in json_data_preview.get("modelVersions", []): # Try to find a relevant model version to check its base model # This is a simplified check; extract_info does a more thorough search cbm = mv.get("baseModel") if cbm and cbm in SUPPORTED_CIVITAI_BASE_MODELS: original_civitai_base_model = cbm if cbm == "Hunyuan Video": is_hunyuan = True break # Now call process_url with a default hunyuan_type for other checks # The actual hunyuan_type choice will be used during the main upload. info, _ = process_url(url, profile, do_download=False, hunyuan_type="Image-to-Video") # Use default for check # If process_url raises an error (e.g. NSFW, not supported), it will be caught by Gradio # and displayed as a gr.Error. Here, we assume it passed if no exception. except gr.Error as e: # Catch errors from process_url (like NSFW, not supported) return (f"Cannot process this model: {e.message}", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)) # Show hunyuan if detected except Exception as e: # Catch any other unexpected error during preview print(f"Unexpected error in check_civit_link: {e}") return (f"An unexpected error occurred: {str(e)}", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan)) hf_username_on_civitai = extract_huggingface_username(info['creator']) if profile.username in TRUSTED_UPLOADERS: return ('Admin/Trusted user override: Upload enabled.', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan)) if not hf_username_on_civitai: no_username_text = (f'If you are {info["creator"]} on Civitai, hi! Your CivitAI profile does not seem to have a link to your Hugging Face account. ' f'Please visit https://civitai.com/user/account, ' f'go to "Edit profile" and add your Hugging Face profile URL (e.g., https://huggingface.co/{profile.username}) to the "Links" section. ' f'
Civitai profile links example
' f'(If you are not {info["creator"]}, you cannot submit their model at this time.)') return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan) if profile.username.lower() != hf_username_on_civitai.lower(): unmatched_username_text = (f'Oops! The Hugging Face username found on the CivitAI profile of {info["creator"]} is ' f'"{hf_username_on_civitai}", but you are logged in as "{profile.username}". ' f'Please ensure your CivitAI profile links to the correct Hugging Face account: ' f'https://civitai.com/user/account (Edit profile -> Links section).' f'
Civitai profile links example') return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=is_hunyuan) # All checks passed return ('Username verified! You can now upload this model.', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=is_hunyuan)) def swap_fill(profile: Optional[gr.OAuthProfile]): if profile is None: # Not logged in return gr.update(visible=True), gr.update(visible=False) else: # Logged in return gr.update(visible=False), gr.update(visible=True) def show_output(): return gr.update(visible=True) def list_civit_models(username_civitai: str): if not username_civitai: return "" url = f"https://civitai.com/api/v1/models?username={username_civitai}&limit=100&sort=Newest" # Added sort all_model_urls = "" page_count = 0 max_pages = 5 # Limit number of pages to fetch to avoid very long requests while url and page_count < max_pages: try: response = requests.get(url, timeout=10) response.raise_for_status() data = response.json() except requests.exceptions.RequestException as e: print(f"Error fetching model list for {username_civitai}: {e}") gr.Warning(f"Could not fetch full model list for {username_civitai}.") break items = data.get('items', []) if not items: break for model in items: # Only list LORAs of supported base model types to avoid cluttering with unsupported ones is_supported_lora = False if model.get("type") == "LORA": # Check modelVersions for baseModel compatibility for mv in model.get("modelVersions", []): if mv.get("baseModel") in SUPPORTED_CIVITAI_BASE_MODELS: is_supported_lora = True break if is_supported_lora: model_slug = slugify(model.get("name", f"model-{model['id']}")) all_model_urls += f'https://civitai.com/models/{model["id"]}/{model_slug}\n' metadata = data.get('metadata', {}) url = metadata.get('nextPage', None) page_count += 1 if page_count >= max_pages and url: print(f"Reached max page limit for fetching models for {username_civitai}.") gr.Info(f"Showing first {max_pages*100} models. There might be more.") if not all_model_urls: gr.Info(f"No compatible LoRA models found for user {username_civitai} or user not found.") return all_model_urls.strip() def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], url: str, link_civit: bool, hunyuan_type: str): if not profile or not profile.username: # Check profile and username raise gr.Error("You must be logged in to Hugging Face to upload.") if not oauth_token or not oauth_token.token: raise gr.Error("Hugging Face authentication token is missing or invalid. Please log out and log back in.") folder = str(uuid.uuid4()) os.makedirs(folder, exist_ok=True) # exist_ok=True is safer if folder might exist gr.Info(f"Starting processing for model {url}") try: # Pass hunyuan_type to process_url info, downloaded_files_summary = process_url(url, profile, do_download=True, folder=folder, hunyuan_type=hunyuan_type) except gr.Error as e: # Catch errors from process_url (NSFW, not supported, API fail) # Cleanup created folder if download failed or was skipped if os.path.exists(folder): try: import shutil shutil.rmtree(folder) except Exception as clean_e: print(f"Error cleaning up folder {folder}: {clean_e}") raise e # Re-raise the Gradio error to display it if not downloaded_files_summary.get("weightName"): raise gr.Error("No model weight file was downloaded. Cannot proceed with upload.") # Determine if user is the author for README generation # This relies on extract_huggingface_username which needs COOKIE_INFO is_author = False if "COOKIE_INFO" in os.environ: hf_username_on_civitai = extract_huggingface_username(info['creator']) if hf_username_on_civitai and profile.username.lower() == hf_username_on_civitai.lower(): is_author = True elif profile.username.lower() == info['creator'].lower(): # Fallback if cookie not set, direct match is_author = True slug_name = slugify(info["name"]) user_repo_id = f"{profile.username}/{slug_name}" gr.Info(f"Creating README for {user_repo_id}...") create_readme(info, downloaded_files_summary, user_repo_id, link_civit, is_author, folder=folder) try: gr.Info(f"Creating repository {user_repo_id} on Hugging Face...") create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token) gr.Info(f"Starting upload of all files to {user_repo_id}...") upload_folder( folder_path=folder, repo_id=user_repo_id, repo_type="model", token=oauth_token.token, commit_message=f"Upload LoRA: {info['name']} from Civitai model ID {info['modelId']}" # Add commit message ) gr.Info(f"Setting repository {user_repo_id} to public...") update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token) gr.Info(f"Model {info['name']} uploaded successfully to {user_repo_id}!") except Exception as e: print(f"Error during Hugging Face repo operations for {user_repo_id}: {e}") # Attempt to provide a more specific error message for token issues if "401" in str(e) or "Unauthorized" in str(e): raise gr.Error("Hugging Face authentication failed (e.g. token expired or insufficient permissions). Please log out and log back in with a token that has write permissions.") raise gr.Error(f"Error during Hugging Face upload: {str(e)}") finally: # Clean up the temporary folder if os.path.exists(folder): try: import shutil shutil.rmtree(folder) print(f"Cleaned up temporary folder: {folder}") except Exception as clean_e: print(f"Error cleaning up folder {folder}: {clean_e}") return f"""# Model uploaded to ๐Ÿค—! Access it here: [{user_repo_id}](https://huggingface.co/{user_repo_id}) """ def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: Optional[gr.OAuthToken], urls_text: str, link_civit: bool, hunyuan_type: str): if not urls_text.strip(): return "No URLs provided for bulk upload." urls = [url.strip() for url in urls_text.split("\n") if url.strip()] if not urls: return "No valid URLs found in the input." upload_results_md = "## Bulk Upload Results:\n\n" success_count = 0 failure_count = 0 for i, url in enumerate(urls): gr.Info(f"Processing URL {i+1}/{len(urls)}: {url}") try: result = upload_civit_to_hf(profile, oauth_token, url, link_civit, hunyuan_type) upload_results_md += f"**SUCCESS**: {url}\n{result}\n\n---\n\n" success_count +=1 except gr.Error as e: # Catch Gradio-raised errors (expected failures) upload_results_md += f"**FAILED**: {url}\n*Reason*: {e.message}\n\n---\n\n" gr.Warning(f"Failed to upload {url}: {e.message}") failure_count +=1 except Exception as e: # Catch unexpected Python errors upload_results_md += f"**FAILED**: {url}\n*Unexpected Error*: {str(e)}\n\n---\n\n" gr.Warning(f"Unexpected error uploading {url}: {str(e)}") failure_count +=1 summary = f"Finished bulk upload: {success_count} successful, {failure_count} failed." gr.Info(summary) upload_results_md = f"## {summary}\n\n" + upload_results_md return upload_results_md # --- Gradio UI --- css = ''' #login_button_row button { /* Target login button specifically */ width: 100% !important; margin: 0 auto; } #disabled_upload_area { /* ID for the disabled area */ opacity: 0.5; pointer-events: none; } ''' with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: # Added a theme gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face ๐Ÿค— By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget (for many models) ''') with gr.Row(elem_id="login_button_row"): login_button = gr.LoginButton() # Moved login_button definition here # Area shown when not logged in (or login fails) with gr.Column(elem_id="disabled_upload_area", visible=True) as disabled_area: gr.HTML("Please log in with Hugging Face to enable uploads.") # Add some dummy placeholders to mirror the enabled_area structure if needed for consistent layout gr.Textbox(label="CivitAI model URL (Log in to enable)", interactive=False) gr.Button("Upload (Log in to enable)", interactive=False) # Area shown when logged in with gr.Column(visible=False) as enabled_area: with gr.Row(): submit_source_civit_enabled = gr.Textbox( placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl", label="CivitAI model URL", info="URL of the CivitAI LoRA model page.", elem_id="submit_source_civit_main" # Unique ID ) hunyuan_type_radio = gr.Radio( choices=["Image-to-Video", "Text-to-Video"], label="HunyuanVideo Type (Select if model is Hunyuan Video)", value="Image-to-Video", # Default as per prompt visible=False, # Initially hidden interactive=True ) link_civit_checkbox = gr.Checkbox(label="Link back to original CivitAI page in README?", value=False) with gr.Accordion("Bulk Upload (Multiple LoRAs)", open=False): civit_username_to_bulk = gr.Textbox( label="Your CivitAI Username (Optional)", info="Type your CivitAI username here to automatically populate the list below with your compatible LoRAs." ) submit_bulk_civit_urls = gr.Textbox( label="CivitAI Model URLs (One per line)", info="Add one CivitAI model URL per line for bulk processing.", lines=6, ) bulk_button = gr.Button("Start Bulk Upload") instructions_html = gr.HTML("") # For messages from check_civit_link # Buttons for single upload # try_again_button is shown if username check fails try_again_button_single = gr.Button("I've updated my CivitAI profile, check again", visible=False) # submit_button_single is the main upload button for single model submit_button_single = gr.Button("Upload Model to Hugging Face", interactive=False, variant="primary") output_markdown = gr.Markdown(label="Upload Progress & Results", visible=False) # Event Handling # When login status changes (login_button implicitly handles profile state for demo.load) # demo.load updates visibility of disabled_area and enabled_area based on login. # The `profile` argument is implicitly passed by Gradio to functions that declare it. # `oauth_token` is also implicitly passed if `login_button` is used and function expects `gr.OAuthToken`. # When URL changes in the enabled area submit_source_civit_enabled.change( fn=check_civit_link, inputs=[submit_source_civit_enabled], # profile is implicitly passed outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio], # Outputs map to: instructions, submit_interactive, try_again_visible, (submit_visible - seems redundant here, check_civit_link logic ensures one is visible), hunyuan_radio_visible # For submit_button_single: 2nd output controls 'interactive', 4th controls 'visible' (often paired with try_again_button's visibility) ) # Try again button for single upload (re-checks the same URL) try_again_button_single.click( fn=check_civit_link, inputs=[submit_source_civit_enabled], outputs=[instructions_html, submit_button_single, try_again_button_single, submit_button_single, hunyuan_type_radio], ) # Autofill bulk URLs from CivitAI username civit_username_to_bulk.change( fn=list_civit_models, inputs=[civit_username_to_bulk], outputs=[submit_bulk_civit_urls] ) # Single model upload button click submit_button_single.click(fn=show_output, outputs=[output_markdown]).then( fn=upload_civit_to_hf, inputs=[submit_source_civit_enabled, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit outputs=[output_markdown] ) # Bulk model upload button click bulk_button.click(fn=show_output, outputs=[output_markdown]).then( fn=bulk_upload, inputs=[submit_bulk_civit_urls, link_civit_checkbox, hunyuan_type_radio], # profile, oauth_token implicit outputs=[output_markdown] ) # Initial state of visible areas based on login status demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False) demo.queue(default_concurrency_limit=5) # Reduced concurrency from 50, can be demanding demo.launch(debug=True) # Added debug=True for development