Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInst
|
|
30 |
from controlnet_aux import ZoeDetector
|
31 |
|
32 |
from compel import Compel, ReturnedEmbeddingsType
|
33 |
-
|
34 |
|
35 |
#from gradio_imageslider import ImageSlider
|
36 |
|
@@ -123,8 +123,6 @@ pipe.load_ip_adapter_instantid(face_adapter)
|
|
123 |
pipe.set_ip_adapter_scale(0.8)
|
124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
125 |
zoe.to(device)
|
126 |
-
|
127 |
-
original_pipe = copy.deepcopy(pipe)
|
128 |
pipe.to(device)
|
129 |
|
130 |
last_lora = ""
|
@@ -204,32 +202,7 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
204 |
)
|
205 |
del weights_sd
|
206 |
del lora_model
|
207 |
-
|
208 |
-
def generate_image(prompt, negative, face_emb, face_image, image_strength, images, guidance_scale, face_strength, depth_control_scale):
|
209 |
-
print("Processing prompt...")
|
210 |
-
conditioning, pooled = compel(prompt)
|
211 |
-
if(negative):
|
212 |
-
negative_conditioning, negative_pooled = compel(negative)
|
213 |
-
else:
|
214 |
-
negative_conditioning, negative_pooled = None, None
|
215 |
-
print("Processing image...")
|
216 |
-
image = pipe(
|
217 |
-
prompt_embeds=conditioning,
|
218 |
-
pooled_prompt_embeds=pooled,
|
219 |
-
negative_prompt_embeds=negative_conditioning,
|
220 |
-
negative_pooled_prompt_embeds=negative_pooled,
|
221 |
-
width=1024,
|
222 |
-
height=1024,
|
223 |
-
image_embeds=face_emb,
|
224 |
-
image=face_image,
|
225 |
-
strength=1-image_strength,
|
226 |
-
control_image=images,
|
227 |
-
num_inference_steps=20,
|
228 |
-
guidance_scale = guidance_scale,
|
229 |
-
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
230 |
-
).images[0]
|
231 |
-
return image
|
232 |
-
|
233 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
234 |
global last_lora, last_merged, last_fused, pipe
|
235 |
|
@@ -304,8 +277,31 @@ def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_stre
|
|
304 |
pipe.unload_textual_inversion()
|
305 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
306 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
309 |
last_lora = repo_name
|
310 |
return image, gr.update(visible=True)
|
311 |
|
|
|
30 |
from controlnet_aux import ZoeDetector
|
31 |
|
32 |
from compel import Compel, ReturnedEmbeddingsType
|
33 |
+
import spaces
|
34 |
|
35 |
#from gradio_imageslider import ImageSlider
|
36 |
|
|
|
123 |
pipe.set_ip_adapter_scale(0.8)
|
124 |
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
125 |
zoe.to(device)
|
|
|
|
|
126 |
pipe.to(device)
|
127 |
|
128 |
last_lora = ""
|
|
|
202 |
)
|
203 |
del weights_sd
|
204 |
del lora_model
|
205 |
+
@spaces.GPU
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, progress=gr.Progress(track_tqdm=True)):
|
207 |
global last_lora, last_merged, last_fused, pipe
|
208 |
|
|
|
277 |
pipe.unload_textual_inversion()
|
278 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
279 |
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
280 |
+
|
281 |
+
print("Processing prompt...")
|
282 |
+
conditioning, pooled = compel(prompt)
|
283 |
+
if(negative):
|
284 |
+
negative_conditioning, negative_pooled = compel(negative)
|
285 |
+
else:
|
286 |
+
negative_conditioning, negative_pooled = None, None
|
287 |
+
print("Processing image...")
|
288 |
+
|
289 |
+
image = pipe(
|
290 |
+
prompt_embeds=conditioning,
|
291 |
+
pooled_prompt_embeds=pooled,
|
292 |
+
negative_prompt_embeds=negative_conditioning,
|
293 |
+
negative_pooled_prompt_embeds=negative_pooled,
|
294 |
+
width=1024,
|
295 |
+
height=1024,
|
296 |
+
image_embeds=face_emb,
|
297 |
+
image=face_image,
|
298 |
+
strength=1-image_strength,
|
299 |
+
control_image=images,
|
300 |
+
num_inference_steps=20,
|
301 |
+
guidance_scale = guidance_scale,
|
302 |
+
controlnet_conditioning_scale=[face_strength, depth_control_scale],
|
303 |
+
).images[0]
|
304 |
+
|
305 |
last_lora = repo_name
|
306 |
return image, gr.update(visible=True)
|
307 |
|