Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -250,6 +250,7 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
250 |
st = time.time()
|
251 |
pipe.unfuse_lora()
|
252 |
pipe.unload_lora_weights()
|
|
|
253 |
et = time.time()
|
254 |
elapsed_time = et - st
|
255 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
@@ -266,15 +267,9 @@ def generate_image(prompt, negative, face_emb, face_image, face_kps, image_stren
|
|
266 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
267 |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
268 |
state_dict_embedding = load_file(embedding_path)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
273 |
-
except:
|
274 |
-
pipe.unload_textual_inversion()
|
275 |
-
pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
276 |
-
pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
277 |
-
|
278 |
print("Processing prompt...")
|
279 |
st = time.time()
|
280 |
conditioning, pooled = compel(prompt)
|
|
|
250 |
st = time.time()
|
251 |
pipe.unfuse_lora()
|
252 |
pipe.unload_lora_weights()
|
253 |
+
pipe.unload_textual_inversion()
|
254 |
et = time.time()
|
255 |
elapsed_time = et - st
|
256 |
print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
|
|
|
267 |
text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
|
268 |
embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
|
269 |
state_dict_embedding = load_file(embedding_path)
|
270 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l" if "clip_l" in state_dict_embedding else "text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
271 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g" if "clip_g" in state_dict_embedding else "text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
272 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
print("Processing prompt...")
|
274 |
st = time.time()
|
275 |
conditioning, pooled = compel(prompt)
|