Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,32 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
from safetensors.torch import load_file
|
6 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
7 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
|
|
8 |
import lora
|
9 |
import copy
|
10 |
import json
|
11 |
import gc
|
12 |
import random
|
13 |
from urllib.parse import quote
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
with open("sdxl_loras.json", "r") as file:
|
15 |
data = json.load(file)
|
16 |
sdxl_loras_raw = [
|
@@ -52,16 +68,60 @@ sdxl_loras_raw_new = [item for item in sdxl_loras_raw if item.get("new") == True
|
|
52 |
|
53 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
vae = AutoencoderKL.from_pretrained(
|
58 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
59 |
)
|
60 |
-
pipe =
|
61 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
62 |
vae=vae,
|
63 |
torch_dtype=torch.float16,
|
64 |
)
|
|
|
65 |
original_pipe = copy.deepcopy(pipe)
|
66 |
pipe.to(device)
|
67 |
|
@@ -162,9 +222,22 @@ def merge_incompatible_lora(full_path_lora, lora_scale):
|
|
162 |
del lora_model
|
163 |
gc.collect()
|
164 |
|
165 |
-
def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_loras_new, progress=gr.Progress(track_tqdm=True)):
|
166 |
global last_lora, last_merged, last_fused, pipe
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
if(selected_state.index < 0):
|
169 |
if(selected_state.index == -9999):
|
170 |
selected_state.index = 0
|
@@ -194,19 +267,22 @@ def run_lora(prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_lora
|
|
194 |
if(is_pivotal):
|
195 |
#Add the textual inversion embeddings from pivotal tuning models
|
196 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
embhandler = TokenEmbeddingsHandler(text_encoders, tokenizers)
|
201 |
-
embhandler.load_embeddings(embedding_path)
|
202 |
|
203 |
image = pipe(
|
204 |
prompt=prompt,
|
205 |
negative_prompt=negative,
|
206 |
width=1024,
|
207 |
height=1024,
|
|
|
|
|
|
|
|
|
208 |
num_inference_steps=20,
|
209 |
-
guidance_scale=7
|
|
|
210 |
).images[0]
|
211 |
last_lora = repo_name
|
212 |
gc.collect()
|
@@ -332,7 +408,7 @@ with gr.Blocks(css="custom.css") as demo:
|
|
332 |
show_progress=False
|
333 |
).success(
|
334 |
fn=run_lora,
|
335 |
-
inputs=[prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new],
|
336 |
outputs=[result, share_group],
|
337 |
)
|
338 |
button.click(
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
from huggingface_hub import hf_hub_download
|
4 |
from safetensors.torch import load_file
|
5 |
from share_btn import community_icon_html, loading_icon_html, share_js
|
6 |
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler
|
7 |
+
|
8 |
import lora
|
9 |
import copy
|
10 |
import json
|
11 |
import gc
|
12 |
import random
|
13 |
from urllib.parse import quote
|
14 |
+
import gdown
|
15 |
+
import os
|
16 |
+
|
17 |
+
import diffusers
|
18 |
+
from diffusers.utils import load_image
|
19 |
+
from diffusers.models import ControlNetModel
|
20 |
+
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
|
21 |
+
import cv2
|
22 |
+
import torch
|
23 |
+
import numpy as np
|
24 |
+
from PIL import Image
|
25 |
+
|
26 |
+
from insightface.app import FaceAnalysis
|
27 |
+
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
|
28 |
+
from controlnet_aux import ZoeDetector
|
29 |
+
|
30 |
with open("sdxl_loras.json", "r") as file:
|
31 |
data = json.load(file)
|
32 |
sdxl_loras_raw = [
|
|
|
68 |
|
69 |
sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
|
70 |
|
71 |
+
# download models
|
72 |
+
hf_hub_download(
|
73 |
+
repo_id="InstantX/InstantID",
|
74 |
+
filename="ControlNetModel/config.json",
|
75 |
+
local_dir="/data/checkpoints",
|
76 |
+
)
|
77 |
+
hf_hub_download(
|
78 |
+
repo_id="InstantX/InstantID",
|
79 |
+
filename="ControlNetModel/diffusion_pytorch_model.safetensors",
|
80 |
+
local_dir="/data/checkpoints",
|
81 |
+
)
|
82 |
+
hf_hub_download(
|
83 |
+
repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="/data/checkpoints"
|
84 |
+
)
|
85 |
+
hf_hub_download(
|
86 |
+
repo_id="latent-consistency/lcm-lora-sdxl",
|
87 |
+
filename="pytorch_lora_weights.safetensors",
|
88 |
+
local_dir="/data/checkpoints",
|
89 |
+
)
|
90 |
+
# download antelopev2
|
91 |
+
gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output=".", quiet=False, fuzzy=True)
|
92 |
+
# unzip antelopev2.zip
|
93 |
+
os.system("unzip .antelopev2.zip -d /data/models/")
|
94 |
+
|
95 |
+
app = FaceAnalysis(name='antelopev2', root='./data', providers=['CPUExecutionProvider'])
|
96 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
97 |
+
|
98 |
+
# prepare models under ./checkpoints
|
99 |
+
face_adapter = f'/data/checkpoints/ip-adapter.bin'
|
100 |
+
controlnet_path = f'/data/checkpoints/ControlNetModel'
|
101 |
+
|
102 |
+
# load IdentityNet
|
103 |
+
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
|
104 |
+
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=torch.float16)
|
105 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
106 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("rubbrband/albedobaseXL_v21",
|
107 |
+
vae=vae,
|
108 |
+
controlnet=[identitynet, zoedepthnet],
|
109 |
+
torch_dtype=torch.float16)
|
110 |
+
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
|
111 |
+
pipe.load_ip_adapter_instantid(face_adapter)
|
112 |
+
pipe.set_ip_adapter_scale(0.8)
|
113 |
+
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
|
114 |
+
zoe.to("cuda")
|
115 |
|
116 |
vae = AutoencoderKL.from_pretrained(
|
117 |
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
118 |
)
|
119 |
+
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained(
|
120 |
"stabilityai/stable-diffusion-xl-base-1.0",
|
121 |
vae=vae,
|
122 |
torch_dtype=torch.float16,
|
123 |
)
|
124 |
+
|
125 |
original_pipe = copy.deepcopy(pipe)
|
126 |
pipe.to(device)
|
127 |
|
|
|
222 |
del lora_model
|
223 |
gc.collect()
|
224 |
|
225 |
+
def run_lora(face_image, prompt, negative, lora_scale, selected_state, sdxl_loras, sdxl_loras_new, progress=gr.Progress(track_tqdm=True)):
|
226 |
global last_lora, last_merged, last_fused, pipe
|
227 |
+
|
228 |
+
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
|
229 |
+
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
|
230 |
+
face_emb = face_info['embedding']
|
231 |
+
face_kps = draw_kps(face_image, face_info['kps'])
|
232 |
+
|
233 |
+
#prepare face zoe
|
234 |
+
with torch.no_grad():
|
235 |
+
image_zoe = zoe(face_image)
|
236 |
+
|
237 |
+
width, height = face_kps.size
|
238 |
+
images = [face_kps, image_zoe.resize((height, width))]
|
239 |
+
|
240 |
+
|
241 |
if(selected_state.index < 0):
|
242 |
if(selected_state.index == -9999):
|
243 |
selected_state.index = 0
|
|
|
267 |
if(is_pivotal):
|
268 |
#Add the textual inversion embeddings from pivotal tuning models
|
269 |
text_embedding_name = sdxl_loras[selected_state.index]["text_embedding_weights"]
|
270 |
+
state_dict_embedding = load_file(text_embedding_name)
|
271 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
|
272 |
+
pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
|
|
|
|
|
273 |
|
274 |
image = pipe(
|
275 |
prompt=prompt,
|
276 |
negative_prompt=negative,
|
277 |
width=1024,
|
278 |
height=1024,
|
279 |
+
image_embeds=face_emb,
|
280 |
+
image=face_image,
|
281 |
+
strength=0.85,
|
282 |
+
control_image=images,
|
283 |
num_inference_steps=20,
|
284 |
+
guidance_scale = 7,
|
285 |
+
controlnet_conditioning_scale=[0.8, 0.8],
|
286 |
).images[0]
|
287 |
last_lora = repo_name
|
288 |
gc.collect()
|
|
|
408 |
show_progress=False
|
409 |
).success(
|
410 |
fn=run_lora,
|
411 |
+
inputs=[photo, prompt, negative, weight, selected_state, gr_sdxl_loras, gr_sdxl_loras_new],
|
412 |
outputs=[result, share_group],
|
413 |
)
|
414 |
button.click(
|