flux-lora-lab / app.py
multimodalart's picture
Update app.py
2c6e805 verified
raw
history blame
21.2 kB
import os
import gradio as gr
import json
import logging
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL, AutoPipelineForImage2Image
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
# Initialize the base model
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model = "black-forest-labs/FLUX.1-dev"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1).to(device)
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(base_model,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=dtype
)
MAX_SEED = 2**32-1
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, selected_indices, width, height):
selected_index = evt.index
selected_indices = selected_indices or []
if selected_index in selected_indices:
# LoRA is already selected, remove it
selected_indices.remove(selected_index)
else:
if len(selected_indices) < 2:
selected_indices.append(selected_index)
else:
raise gr.Error("You can select up to 2 LoRAs only.")
# Initialize outputs
selected_info_1 = ""
selected_info_2 = ""
lora_scale_1 = 0.95
lora_scale_2 = 0.95
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
# Update prompt placeholder based on last selected LoRA
if selected_indices:
last_selected_lora = loras[selected_indices[-1]]
new_placeholder = f"Type a prompt for {last_selected_lora['title']}"
else:
new_placeholder = "Type a prompt after selecting a LoRA"
return (
gr.update(placeholder=new_placeholder),
selected_info_1,
selected_info_2,
selected_indices,
lora_scale_1,
lora_scale_2,
width,
height,
)
def remove_lora_1(selected_indices):
selected_indices = selected_indices or []
if len(selected_indices) >= 1:
selected_indices.pop(0)
# Update selected_info_1 and selected_info_2
selected_info_1 = ""
selected_info_2 = ""
lora_scale_1 = 0.95
lora_scale_2 = 0.95
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2
def remove_lora_2(selected_indices):
selected_indices = selected_indices or []
if len(selected_indices) >= 2:
selected_indices.pop(1)
# Update selected_info_1 and selected_info_2
selected_info_1 = ""
selected_info_2 = ""
lora_scale_1 = 0.95
lora_scale_2 = 0.95
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2
def randomize_loras(selected_indices):
if len(loras) < 2:
raise gr.Error("Not enough LoRAs to randomize.")
selected_indices = random.sample(range(len(loras)), 2)
selected_info_1 = f"### LoRA 1 Selected: [{loras[selected_indices[0]]['title']}](https://huggingface.co/{loras[selected_indices[0]]['repo']}) ✨"
selected_info_2 = f"### LoRA 2 Selected: [{loras[selected_indices[1]]['title']}](https://huggingface.co/{loras[selected_indices[1]]['repo']}) ✨"
lora_scale_1 = 0.95
lora_scale_2 = 0.95
return selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
good_vae=good_vae,
):
yield img
@spaces.GPU(duration=70)
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
generator = torch.Generator(device="cuda").manual_seed(seed)
pipe_i2i.to("cuda")
image_input = load_image(image_input_path)
final_image = pipe_i2i(
prompt=prompt_mash,
image=image_input,
strength=image_strength,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": 1.0},
output_type="pil",
).images[0]
return final_image
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height, progress=gr.Progress(track_tqdm=True)):
if not selected_indices:
raise gr.Error("You must select at least one LoRA before proceeding.")
selected_loras = [loras[idx] for idx in selected_indices]
# Build the prompt with trigger words
prompt_mash = prompt
for lora in selected_loras:
trigger_word = lora.get('trigger_word', '')
if trigger_word:
if lora.get("trigger_position") == "prepend":
prompt_mash = f"{trigger_word} {prompt_mash}"
else:
prompt_mash = f"{prompt_mash} {trigger_word}"
# Unload previous LoRA weights
with calculateDuration("Unloading LoRA"):
pipe.unload_lora_weights()
pipe_i2i.unload_lora_weights()
# Load LoRA weights with respective scales
with calculateDuration("Loading LoRA weights"):
for idx, lora in enumerate(selected_loras):
lora_path = lora['repo']
scale = lora_scale_1 if idx == 0 else lora_scale_2
if image_input is not None:
if "weights" in lora:
pipe_i2i.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
else:
pipe_i2i.load_lora_weights(lora_path, multiplier=scale)
else:
if "weights" in lora:
pipe.load_lora_weights(lora_path, weight_name=lora["weights"], multiplier=scale)
else:
pipe.load_lora_weights(lora_path, multiplier=scale)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Generate image
if image_input is not None:
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
yield final_image, seed, gr.update(visible=False)
else:
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
# Consume the generator to get the final image
final_image = None
step_counter = 0
for image in image_generator:
step_counter+=1
final_image = image
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
yield image, seed, gr.update(value=progress_bar, visible=True)
yield final_image, seed, gr.update(value=progress_bar, visible=False)
def get_huggingface_safetensors(link):
split_link = link.split("/")
if len(split_link) == 2:
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if base_model not in ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]:
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
safetensors_name = None
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if file.endswith(".safetensors"):
safetensors_name = file.split("/")[-1]
if not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp")):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
raise Exception("Invalid Hugging Face repository with a *.safetensors LoRA")
if not safetensors_name:
raise Exception("No *.safetensors file found in the repository")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if link.startswith("https://"):
if link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co"):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora, selected_indices):
global loras
if custom_lora:
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if existing_item_index is None:
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in loras]
# Update selected_indices if there's room
if len(selected_indices) < 2:
selected_indices.append(existing_item_index)
selected_info_1 = ""
selected_info_2 = ""
lora_scale_1 = 0.95
lora_scale_2 = 0.95
if len(selected_indices) >= 1:
lora1 = loras[selected_indices[0]]
selected_info_1 = f"### LoRA 1 Selected: [{lora1['title']}](https://huggingface.co/{lora1['repo']}) ✨"
if len(selected_indices) >= 2:
lora2 = loras[selected_indices[1]]
selected_info_2 = f"### LoRA 2 Selected: [{lora2['title']}](https://huggingface.co/{lora2['repo']}) ✨"
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2)
else:
return (gr.update(visible=True, value=card), gr.update(visible=True), gr.update(value=gallery_items),
gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange())
except Exception as e:
print(e)
return gr.update(visible=True, value=str(e)), gr.update(visible=True), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
else:
return gr.update(visible=False), gr.update(visible=False), gr.NoChange(), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
def remove_custom_lora(custom_lora_info, custom_lora_button, selected_indices):
global loras
if loras:
custom_lora_repo = loras[-1]['repo']
# Remove from loras list
loras = loras[:-1]
# Remove from selected_indices if selected
custom_lora_index = len(loras)
if custom_lora_index in selected_indices:
selected_indices.remove(custom_lora_index)
# Update gallery
gallery_items = [(item["image"], item["title"]) for item in loras]
return gr.update(visible=False), gr.update(visible=False), gr.update(value=gallery_items), gr.NoChange(), gr.NoChange(), selected_indices, gr.NoChange(), gr.NoChange()
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.custom_lora_card{margin-bottom: 1em}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
elem_id="title",
)
selected_indices = gr.State([])
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
randomize_button = gr.Button("🎲", variant="secondary")
with gr.Row():
selected_info_1 = gr.Markdown("")
lora_scale_1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
remove_button_1 = gr.Button("Remove LoRA 1")
selected_info_2 = gr.Markdown("")
lora_scale_2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95)
remove_button_2 = gr.Button("Remove LoRA 2")
with gr.Row():
with gr.Column():
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
with gr.Column():
progress_bar = gr.Markdown(elem_id="progress",visible=False)
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
input_image = gr.Image(label="Input image", type="filepath")
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
gallery.select(
update_selection,
inputs=[selected_indices, width, height],
outputs=[prompt, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2, width, height]
)
remove_button_1.click(
remove_lora_1,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
)
remove_button_2.click(
remove_lora_2,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
)
randomize_button.click(
randomize_loras,
inputs=[selected_indices],
outputs=[selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
)
custom_lora.submit(
add_custom_lora,
inputs=[custom_lora, selected_indices],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
)
custom_lora_button.click(
remove_custom_lora,
inputs=[custom_lora_info, custom_lora_button, selected_indices],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info_1, selected_info_2, selected_indices, lora_scale_1, lora_scale_2]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, input_image, image_strength, cfg_scale, steps, selected_indices, lora_scale_1, lora_scale_2, randomize_seed, seed, width, height],
outputs=[result, seed, progress_bar]
)
app.queue()
app.launch()