Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -55,11 +55,30 @@ class calculateDuration:
|
|
55 |
else:
|
56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
57 |
|
58 |
-
def update_selection(evt: gr.SelectData, width, height):
|
59 |
selected_lora = loras[evt.index]
|
60 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if "aspect" in selected_lora:
|
64 |
if selected_lora["aspect"] == "portrait":
|
65 |
width = 768
|
@@ -70,16 +89,21 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
70 |
else:
|
71 |
width = 1024
|
72 |
height = 1024
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
@spaces.GPU(duration=70)
|
82 |
-
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height,
|
83 |
pipe.to("cuda")
|
84 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
85 |
with calculateDuration("Generating image"):
|
@@ -91,14 +115,13 @@ def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scal
|
|
91 |
width=width,
|
92 |
height=height,
|
93 |
generator=generator,
|
94 |
-
joint_attention_kwargs={"scale": lora_scale},
|
95 |
output_type="pil",
|
96 |
good_vae=good_vae,
|
97 |
):
|
98 |
yield img
|
99 |
|
100 |
@spaces.GPU(duration=70)
|
101 |
-
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height,
|
102 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
103 |
pipe_i2i.to("cuda")
|
104 |
image_input = load_image(image_input_path)
|
@@ -111,93 +134,99 @@ def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps
|
|
111 |
width=width,
|
112 |
height=height,
|
113 |
generator=generator,
|
114 |
-
joint_attention_kwargs={"scale": lora_scale},
|
115 |
output_type="pil",
|
116 |
).images[0]
|
117 |
return final_image
|
|
|
|
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
if
|
127 |
-
if
|
128 |
-
|
129 |
else:
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
-
with calculateDuration("Unloading
|
137 |
pipe.unload_lora_weights()
|
138 |
pipe_i2i.unload_lora_weights()
|
139 |
|
140 |
-
# Load LoRA weights
|
141 |
-
with calculateDuration(
|
142 |
-
if
|
143 |
-
if
|
144 |
-
pipe_i2i.load_lora_weights(
|
145 |
-
|
146 |
-
pipe_i2i.load_lora_weights(
|
147 |
else:
|
148 |
-
if
|
149 |
-
pipe.load_lora_weights(
|
150 |
-
|
151 |
-
pipe.load_lora_weights(
|
152 |
|
153 |
# Set random seed for reproducibility
|
154 |
with calculateDuration("Randomizing seed"):
|
155 |
if randomize_seed:
|
156 |
seed = random.randint(0, MAX_SEED)
|
157 |
|
158 |
-
if
|
159 |
-
|
160 |
-
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, lora_scale, seed)
|
161 |
yield final_image, seed, gr.update(visible=False)
|
162 |
else:
|
163 |
-
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height,
|
164 |
-
|
165 |
# Consume the generator to get the final image
|
166 |
final_image = None
|
167 |
step_counter = 0
|
168 |
for image in image_generator:
|
169 |
-
step_counter+=1
|
170 |
final_image = image
|
171 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
172 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
173 |
-
|
174 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
175 |
|
176 |
def get_huggingface_safetensors(link):
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
|
202 |
def check_custom_model(link):
|
203 |
if(link.startswith("https://")):
|
@@ -257,8 +286,8 @@ css = '''
|
|
257 |
#title img{width: 100px; margin-right: 0.5em}
|
258 |
#gallery .grid-wrap{height: 10vh}
|
259 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
260 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
261 |
-
.card_internal img{margin-right: 1em}
|
262 |
.styler{--form-gap-width: 0px !important}
|
263 |
#progress{height:30px}
|
264 |
#progress .generating{display:none}
|
@@ -267,18 +296,18 @@ css = '''
|
|
267 |
'''
|
268 |
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
269 |
title = gr.HTML(
|
270 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">
|
271 |
elem_id="title",
|
272 |
)
|
273 |
-
|
|
|
274 |
with gr.Row():
|
275 |
with gr.Column(scale=3):
|
276 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting
|
277 |
with gr.Column(scale=1, elem_id="gen_column"):
|
278 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
279 |
with gr.Row():
|
280 |
with gr.Column():
|
281 |
-
selected_info = gr.Markdown("")
|
282 |
gallery = gr.Gallery(
|
283 |
[(item["image"], item["title"]) for item in loras],
|
284 |
label="LoRA Gallery",
|
@@ -291,6 +320,17 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
291 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
292 |
custom_lora_info = gr.HTML(visible=False)
|
293 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
with gr.Column():
|
295 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
296 |
result = gr.Image(label="Generated Image")
|
@@ -312,28 +352,37 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
|
312 |
with gr.Row():
|
313 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
314 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
315 |
-
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=3, step=0.01, value=0.95)
|
316 |
|
317 |
gallery.select(
|
318 |
update_selection,
|
319 |
-
inputs=[width, height],
|
320 |
-
outputs=[prompt,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
)
|
322 |
custom_lora.input(
|
323 |
add_custom_lora,
|
324 |
inputs=[custom_lora],
|
325 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
326 |
)
|
327 |
custom_lora_button.click(
|
328 |
remove_custom_lora,
|
329 |
-
outputs=[custom_lora_info, custom_lora_button, gallery,
|
330 |
)
|
331 |
gr.on(
|
332 |
triggers=[generate_button.click, prompt.submit],
|
333 |
fn=run_lora,
|
334 |
-
inputs=[prompt, input_image, image_strength, cfg_scale, steps,
|
335 |
outputs=[result, seed, progress_bar]
|
336 |
)
|
337 |
|
338 |
app.queue()
|
339 |
-
app.launch()
|
|
|
55 |
else:
|
56 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
57 |
|
58 |
+
def update_selection(evt: gr.SelectData, width, height, selected_lora1, selected_lora2):
|
59 |
selected_lora = loras[evt.index]
|
60 |
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
61 |
+
|
62 |
+
# Initialize outputs
|
63 |
+
outputs = []
|
64 |
+
|
65 |
+
if selected_lora1 is None:
|
66 |
+
selected_lora1 = selected_lora
|
67 |
+
selected_lora1_info = f"### LoRA 1 Selected: [{selected_lora1['title']}](https://huggingface.co/{selected_lora1['repo']}) ✨"
|
68 |
+
lora_scale1_visible = True
|
69 |
+
remove_lora1_visible = True
|
70 |
+
elif selected_lora2 is None:
|
71 |
+
selected_lora2 = selected_lora
|
72 |
+
selected_lora2_info = f"### LoRA 2 Selected: [{selected_lora2['title']}](https://huggingface.co/{selected_lora2['repo']}) ✨"
|
73 |
+
lora_scale2_visible = True
|
74 |
+
remove_lora2_visible = True
|
75 |
+
else:
|
76 |
+
raise gr.Error("You can only select up to two LoRAs. Please remove one before selecting another.")
|
77 |
+
|
78 |
+
# Update placeholder
|
79 |
+
placeholder_update = gr.update(placeholder=new_placeholder)
|
80 |
+
|
81 |
+
# For width and height adjustment
|
82 |
if "aspect" in selected_lora:
|
83 |
if selected_lora["aspect"] == "portrait":
|
84 |
width = 768
|
|
|
89 |
else:
|
90 |
width = 1024
|
91 |
height = 1024
|
92 |
+
|
93 |
+
return placeholder_update, selected_lora1, selected_lora2, selected_lora1_info, selected_lora2_info, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), width, height
|
94 |
+
|
95 |
+
def remove_selected_lora1(selected_lora1, selected_lora1_info):
|
96 |
+
selected_lora1 = None
|
97 |
+
selected_lora1_info = ""
|
98 |
+
return selected_lora1, selected_lora1_info, gr.update(visible=False), gr.update(visible=False)
|
99 |
+
|
100 |
+
def remove_selected_lora2(selected_lora2, selected_lora2_info):
|
101 |
+
selected_lora2 = None
|
102 |
+
selected_lora2_info = ""
|
103 |
+
return selected_lora2, selected_lora2_info, gr.update(visible=False), gr.update(visible=False)
|
104 |
|
105 |
@spaces.GPU(duration=70)
|
106 |
+
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
|
107 |
pipe.to("cuda")
|
108 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
109 |
with calculateDuration("Generating image"):
|
|
|
115 |
width=width,
|
116 |
height=height,
|
117 |
generator=generator,
|
|
|
118 |
output_type="pil",
|
119 |
good_vae=good_vae,
|
120 |
):
|
121 |
yield img
|
122 |
|
123 |
@spaces.GPU(duration=70)
|
124 |
+
def generate_image_to_image(prompt_mash, image_input_path, image_strength, steps, cfg_scale, width, height, seed):
|
125 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
126 |
pipe_i2i.to("cuda")
|
127 |
image_input = load_image(image_input_path)
|
|
|
134 |
width=width,
|
135 |
height=height,
|
136 |
generator=generator,
|
|
|
137 |
output_type="pil",
|
138 |
).images[0]
|
139 |
return final_image
|
140 |
+
|
141 |
+
def run_lora(prompt, image_input, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2, progress=gr.Progress(track_tqdm=True)):
|
142 |
+
if selected_lora1 is None and selected_lora2 is None:
|
143 |
+
raise gr.Error("You must select at least one LoRA before proceeding.")
|
144 |
|
145 |
+
# Build the prompt mash
|
146 |
+
prompt_mash = prompt
|
147 |
+
|
148 |
+
# Handle trigger words and positions
|
149 |
+
trigger_words = []
|
150 |
+
if selected_lora1 is not None:
|
151 |
+
trigger_word1 = selected_lora1.get("trigger_word", "")
|
152 |
+
if trigger_word1:
|
153 |
+
if selected_lora1.get("trigger_position") == "prepend":
|
154 |
+
trigger_words.insert(0, trigger_word1)
|
155 |
else:
|
156 |
+
trigger_words.append(trigger_word1)
|
157 |
+
if selected_lora2 is not None:
|
158 |
+
trigger_word2 = selected_lora2.get("trigger_word", "")
|
159 |
+
if trigger_word2:
|
160 |
+
if selected_lora2.get("trigger_position") == "prepend":
|
161 |
+
trigger_words.insert(0, trigger_word2)
|
162 |
+
else:
|
163 |
+
trigger_words.append(trigger_word2)
|
164 |
+
# Combine trigger words with the prompt
|
165 |
+
if trigger_words:
|
166 |
+
prompt_mash = f"{' '.join(trigger_words)} {prompt}"
|
167 |
|
168 |
+
with calculateDuration("Unloading LoRAs"):
|
169 |
pipe.unload_lora_weights()
|
170 |
pipe_i2i.unload_lora_weights()
|
171 |
|
172 |
+
# Load LoRA weights with respective scales
|
173 |
+
with calculateDuration("Loading LoRA weights"):
|
174 |
+
if image_input is not None:
|
175 |
+
if selected_lora1 is not None:
|
176 |
+
pipe_i2i.load_lora_weights(selected_lora1['repo'], weight_name=selected_lora1.get('weights'), scale=lora_scale1)
|
177 |
+
if selected_lora2 is not None:
|
178 |
+
pipe_i2i.load_lora_weights(selected_lora2['repo'], weight_name=selected_lora2.get('weights'), scale=lora_scale2)
|
179 |
else:
|
180 |
+
if selected_lora1 is not None:
|
181 |
+
pipe.load_lora_weights(selected_lora1['repo'], weight_name=selected_lora1.get('weights'), scale=lora_scale1)
|
182 |
+
if selected_lora2 is not None:
|
183 |
+
pipe.load_lora_weights(selected_lora2['repo'], weight_name=selected_lora2.get('weights'), scale=lora_scale2)
|
184 |
|
185 |
# Set random seed for reproducibility
|
186 |
with calculateDuration("Randomizing seed"):
|
187 |
if randomize_seed:
|
188 |
seed = random.randint(0, MAX_SEED)
|
189 |
|
190 |
+
if image_input is not None:
|
191 |
+
final_image = generate_image_to_image(prompt_mash, image_input, image_strength, steps, cfg_scale, width, height, seed)
|
|
|
192 |
yield final_image, seed, gr.update(visible=False)
|
193 |
else:
|
194 |
+
image_generator = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress)
|
|
|
195 |
# Consume the generator to get the final image
|
196 |
final_image = None
|
197 |
step_counter = 0
|
198 |
for image in image_generator:
|
199 |
+
step_counter += 1
|
200 |
final_image = image
|
201 |
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
202 |
yield image, seed, gr.update(value=progress_bar, visible=True)
|
|
|
203 |
yield final_image, seed, gr.update(value=progress_bar, visible=False)
|
204 |
|
205 |
def get_huggingface_safetensors(link):
|
206 |
+
split_link = link.split("/")
|
207 |
+
if(len(split_link) == 2):
|
208 |
+
model_card = ModelCard.load(link)
|
209 |
+
base_model = model_card.data.get("base_model")
|
210 |
+
print(base_model)
|
211 |
+
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
212 |
+
raise Exception("Not a FLUX LoRA!")
|
213 |
+
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
214 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
215 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
216 |
+
fs = HfFileSystem()
|
217 |
+
try:
|
218 |
+
list_of_files = fs.ls(link, detail=False)
|
219 |
+
for file in list_of_files:
|
220 |
+
if(file.endswith(".safetensors")):
|
221 |
+
safetensors_name = file.split("/")[-1]
|
222 |
+
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
223 |
+
image_elements = file.split("/")
|
224 |
+
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
225 |
+
except Exception as e:
|
226 |
+
print(e)
|
227 |
+
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
228 |
+
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
229 |
+
return split_link[1], link, safetensors_name, trigger_word, image_url
|
230 |
|
231 |
def check_custom_model(link):
|
232 |
if(link.startswith("https://")):
|
|
|
286 |
#title img{width: 100px; margin-right: 0.5em}
|
287 |
#gallery .grid-wrap{height: 10vh}
|
288 |
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
289 |
+
.custom_lora_card .card_internal{display: flex;height: 100px;margin-top: .5em}
|
290 |
+
.custom_lora_card .card_internal img{margin-right: 1em}
|
291 |
.styler{--form-gap-width: 0px !important}
|
292 |
#progress{height:30px}
|
293 |
#progress .generating{display:none}
|
|
|
296 |
'''
|
297 |
with gr.Blocks(theme=gr.themes.Soft(), css=css, delete_cache=(60, 3600)) as app:
|
298 |
title = gr.HTML(
|
299 |
+
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> LoRA Lab</h1>""",
|
300 |
elem_id="title",
|
301 |
)
|
302 |
+
selected_lora1 = gr.State(None)
|
303 |
+
selected_lora2 = gr.State(None)
|
304 |
with gr.Row():
|
305 |
with gr.Column(scale=3):
|
306 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting LoRAs")
|
307 |
with gr.Column(scale=1, elem_id="gen_column"):
|
308 |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
309 |
with gr.Row():
|
310 |
with gr.Column():
|
|
|
311 |
gallery = gr.Gallery(
|
312 |
[(item["image"], item["title"]) for item in loras],
|
313 |
label="LoRA Gallery",
|
|
|
320 |
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
321 |
custom_lora_info = gr.HTML(visible=False)
|
322 |
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
323 |
+
# Selected LoRAs section
|
324 |
+
gr.Markdown("### Selected LoRAs")
|
325 |
+
with gr.Row():
|
326 |
+
with gr.Column():
|
327 |
+
selected_lora1_info = gr.Markdown("", visible=False)
|
328 |
+
lora_scale1 = gr.Slider(label="LoRA 1 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
329 |
+
remove_lora1_button = gr.Button("Remove LoRA 1", visible=False)
|
330 |
+
with gr.Column():
|
331 |
+
selected_lora2_info = gr.Markdown("", visible=False)
|
332 |
+
lora_scale2 = gr.Slider(label="LoRA 2 Scale", minimum=0, maximum=3, step=0.01, value=0.95, visible=False)
|
333 |
+
remove_lora2_button = gr.Button("Remove LoRA 2", visible=False)
|
334 |
with gr.Column():
|
335 |
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
336 |
result = gr.Image(label="Generated Image")
|
|
|
352 |
with gr.Row():
|
353 |
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
354 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
|
|
355 |
|
356 |
gallery.select(
|
357 |
update_selection,
|
358 |
+
inputs=[width, height, selected_lora1, selected_lora2],
|
359 |
+
outputs=[prompt, selected_lora1, selected_lora2, selected_lora1_info, selected_lora2_info, lora_scale1, remove_lora1_button, lora_scale2, remove_lora2_button, width, height]
|
360 |
+
)
|
361 |
+
remove_lora1_button.click(
|
362 |
+
remove_selected_lora1,
|
363 |
+
inputs=[selected_lora1, selected_lora1_info],
|
364 |
+
outputs=[selected_lora1, selected_lora1_info, lora_scale1, remove_lora1_button]
|
365 |
+
)
|
366 |
+
remove_lora2_button.click(
|
367 |
+
remove_selected_lora2,
|
368 |
+
inputs=[selected_lora2, selected_lora2_info],
|
369 |
+
outputs=[selected_lora2, selected_lora2_info, lora_scale2, remove_lora2_button]
|
370 |
)
|
371 |
custom_lora.input(
|
372 |
add_custom_lora,
|
373 |
inputs=[custom_lora],
|
374 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_lora1_info, selected_lora2_info, prompt]
|
375 |
)
|
376 |
custom_lora_button.click(
|
377 |
remove_custom_lora,
|
378 |
+
outputs=[custom_lora_info, custom_lora_button, gallery, selected_lora1_info, selected_lora2_info, custom_lora]
|
379 |
)
|
380 |
gr.on(
|
381 |
triggers=[generate_button.click, prompt.submit],
|
382 |
fn=run_lora,
|
383 |
+
inputs=[prompt, input_image, image_strength, cfg_scale, steps, randomize_seed, seed, width, height, selected_lora1, selected_lora2, lora_scale1, lora_scale2],
|
384 |
outputs=[result, seed, progress_bar]
|
385 |
)
|
386 |
|
387 |
app.queue()
|
388 |
+
app.launch()
|